| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
L.D. Akulenko, D.M. Klimov, Yu.G. Markov, V.V. Perepelkin, and A.S. Filippova, "Numerical-Analytic Modeling of Perturbed Oscillatory Motions of the Earth Pole," Mech. Solids. 49 (6), 690-702 (2014) |
Year |
2014 |
Volume |
49 |
Number |
6 |
Pages |
690-702 |
DOI |
10.3103/S0025654414060119 |
Title |
Numerical-Analytic Modeling of Perturbed Oscillatory Motions of the Earth Pole |
Author(s) |
L.D. Akulenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, gavrikov@ipmnet.ru)
D.M. Klimov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, klimov@ipmnet.ru)
Yu.G. Markov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, markov@ipmnet.ru)
V.V. Perepelkin (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, vadimkin1@yandex.ru)
A.S. Filippova (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, filippova.alex@gmail.com) |
Abstract |
An improved numerical-analytic model of multifrequency oscillatory motion of Earth's pole with temporal variations in the geopotential coefficients taken into account is considered. The model is a natural improvement of the earlier developed basic model of the pole oscillations (the Chandler and annual components) by using the methods of celestial mechanics and the data of the terrestrial gravitational field observations. This model allows one to improve the accuracy of forecast of Earth's pole motion trajectory in the periods of significant anomalies (irregular deviations). The fundamental aspects of Earth's pole oscillation process are investigated, which allows qualitatively explaining the observed irregular effects in the oscillatory process. The results of numerical modeling of Earth's pole coordinate oscillations are compared with the observation and measurement data of the International Earth Rotation and Reference Systems Service (IERS). |
Keywords |
Earth's pole oscillations, Chandler frequency, Earth compression, geoid, gravitational-tidal perturbations, celestial-mechanical model |
References |
1. | International Earth Rotation and Reference Systems Service -
IERS Annual Reports, URL: http://www.iers.org. |
2. | M. K. Cheng and B. D. Tapley,
"Variations in the Earth's Oblateness during the Past 28 Years,"
J. Geophys. Res.
109 (9), B09402-09409 (2004). |
3. | L. D. Akulenko, D. M. Klimov, Yu. G. Markov, and V. V. Perepelkin,
"Oscillatory-Rotational Processes in the Earth Motion
about the Center of Mass: Interpolation and Forecast,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 6, 6-29 (2012)
[Mech. Solids (Engl. Transl.)
47 (6), 601-621 (2012)]. |
4. | L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova,
"A Gravitational-Tidal Mechanism for the Earth's Polar Oscillations,"
Astron. Zh.
82 (10), 950-960 (2005)
[Astron. Rep. (Engl. Transl.)
49 (10), 847-857 (2005)]. |
5. | L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova,
"Analysis of Multifrequency Effects in Oscillations of the Earth's Pole,"
Astron. Zh.
84 (5), 471-478 (2007)
[Astron. Rep. (Engl. Transl.)
51 (5), 421-427 (2007)]. |
6. | L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin,
"Modeling of the Earth's Rotary-Oscillatory Motion within a Short Time Interval (Interpolation and Prognosis),"
Dokl. Ross. Akad. Nauk
438 (3), 326-331 (2011)
[Dokl. Phys. (Engl. Transl.)
56 (5), 294-299 (2011)]. |
7. | V. S. Gubanov,
Generalized Least Squares Method. Theory and Applications in Astrometry
(Nauka, St. Petersburg, 1997)
[in Russian]. |
8. | N. M. Astaf'eva,
"Wavelet Analysis: Theoretical Backgrounds and Application Examples,"
Usp. Fiz. Nauk
166 (11), 1145-1170 (1996). |
9. | Yu. G. Markov, V. V. Perepelkin, L. V. Rykhlova, et al.,
"Modeling Intraday Oscillations of the Earth's Pole,"
Astron. Zh.
91 (3), 251-260 (2014)
[Astron. Rep. (Engl. Transl.)
58 (3), 194-203 (2014)]. |
|
Received |
27 June 2014 |
Link to Fulltext |
|
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|