Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-6pp.690-702

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
L.D. Akulenko, D.M. Klimov, Yu.G. Markov, V.V. Perepelkin, and A.S. Filippova, "Numerical-Analytic Modeling of Perturbed Oscillatory Motions of the Earth Pole," Mech. Solids. 49 (6), 690-702 (2014)
Year 2014 Volume 49 Number 6 Pages 690-702
DOI 10.3103/S0025654414060119
Title Numerical-Analytic Modeling of Perturbed Oscillatory Motions of the Earth Pole
Author(s) L.D. Akulenko (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, gavrikov@ipmnet.ru)
D.M. Klimov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, klimov@ipmnet.ru)
Yu.G. Markov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr. Vernadskogo 101, str. 1, Moscow, 119526 Russia, markov@ipmnet.ru)
V.V. Perepelkin (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, vadimkin1@yandex.ru)
A.S. Filippova (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, filippova.alex@gmail.com)
Abstract An improved numerical-analytic model of multifrequency oscillatory motion of Earth's pole with temporal variations in the geopotential coefficients taken into account is considered. The model is a natural improvement of the earlier developed basic model of the pole oscillations (the Chandler and annual components) by using the methods of celestial mechanics and the data of the terrestrial gravitational field observations. This model allows one to improve the accuracy of forecast of Earth's pole motion trajectory in the periods of significant anomalies (irregular deviations). The fundamental aspects of Earth's pole oscillation process are investigated, which allows qualitatively explaining the observed irregular effects in the oscillatory process. The results of numerical modeling of Earth's pole coordinate oscillations are compared with the observation and measurement data of the International Earth Rotation and Reference Systems Service (IERS).
Keywords Earth's pole oscillations, Chandler frequency, Earth compression, geoid, gravitational-tidal perturbations, celestial-mechanical model
References
1.  International Earth Rotation and Reference Systems Service - IERS Annual Reports, URL: http://www.iers.org.
2.  M. K. Cheng and B. D. Tapley, "Variations in the Earth's Oblateness during the Past 28 Years," J. Geophys. Res. 109 (9), B09402-09409 (2004).
3.  L. D. Akulenko, D. M. Klimov, Yu. G. Markov, and V. V. Perepelkin, "Oscillatory-Rotational Processes in the Earth Motion about the Center of Mass: Interpolation and Forecast," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 6-29 (2012) [Mech. Solids (Engl. Transl.) 47 (6), 601-621 (2012)].
4.  L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova, "A Gravitational-Tidal Mechanism for the Earth's Polar Oscillations," Astron. Zh. 82 (10), 950-960 (2005) [Astron. Rep. (Engl. Transl.) 49 (10), 847-857 (2005)].
5.  L. D. Akulenko, S. A. Kumakshev, Yu. G. Markov, and L. V. Rykhlova, "Analysis of Multifrequency Effects in Oscillations of the Earth's Pole," Astron. Zh. 84 (5), 471-478 (2007) [Astron. Rep. (Engl. Transl.) 51 (5), 421-427 (2007)].
6.  L. D. Akulenko, Yu. G. Markov, and V. V. Perepelkin, "Modeling of the Earth's Rotary-Oscillatory Motion within a Short Time Interval (Interpolation and Prognosis)," Dokl. Ross. Akad. Nauk 438 (3), 326-331 (2011) [Dokl. Phys. (Engl. Transl.) 56 (5), 294-299 (2011)].
7.  V. S. Gubanov, Generalized Least Squares Method. Theory and Applications in Astrometry (Nauka, St. Petersburg, 1997) [in Russian].
8.  N. M. Astaf'eva, "Wavelet Analysis: Theoretical Backgrounds and Application Examples," Usp. Fiz. Nauk 166 (11), 1145-1170 (1996).
9.  Yu. G. Markov, V. V. Perepelkin, L. V. Rykhlova, et al., "Modeling Intraday Oscillations of the Earth's Pole," Astron. Zh. 91 (3), 251-260 (2014) [Astron. Rep. (Engl. Transl.) 58 (3), 194-203 (2014)].
Received 27 June 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100