Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2014-6pp.713-724

Archive of Issues

Total articles in the database: 10864
In Russian (»Á‚. –ņÕ. Ő““): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
K.B. Ustinov, "On Shear Separation of a Thin Strip from the Half-Plane," Mech. Solids. 49 (6), 713-724 (2014)
Year 2014 Volume 49 Number 6 Pages 713-724
DOI 10.3103/S0025654414060132
Title On Shear Separation of a Thin Strip from the Half-Plane
Author(s) K.B. Ustinov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr.†Vernadskogo†101, str.†1, Moscow, 119526 Russia, ustinov@ipmnet.ru)
Abstract A homogeneous solution of the problem of semi-infinite shear crack along the interface between a thin layer and an elastic half-plane made of a material with different properties is obtained and studied. Under the assumption that the influence of normal shear stresses can be neglected, the problem is reduced to the Riemann problem by using the two-sided Laplace transform. The factorization procedure is used to obtain asymptotic expressions for displacements of the crack shores near its tip and at a large distance from it. It is shown that the leading terms of the asymptotics of the crack shore displacements at a large distance from its tip correspond to displacements of a rod under boundary conditions of elastic fixation type, i.e., under the assumption that the displacements at the fixation point are proportional to the longitudinal force. The obtained results agree well with known numerical results.
Keywords separation, interface crack, factorization, elastic fixation
References
1.  A. N. Zlatin and A. A. Khrapkov, "A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane," Dokl. Akad. Nauk SSSR 31, 1009-1010 (1986) [Sov. Phys. Dokl. (Engl. Transl.) 31 (12), 1009-1010 (1986)].
2.  A. N. Zlatin and A. A. Khrapkov, "Elastic Half-Plane Weakened by a Crack Parallel to Its Boundary," in Studies in Elasticity and Plasticity, Vol. 16: Problems of Contemporary Fracture Mechanics (LGU, 1990), pp. 68-75 [in Russian].
3.  A. N. Zlatin and A. A. Khrapkov, "Vector Riemann Problem with Zero Index of Matrix-Coefficient Exponent," Izv. VNIIG im. B. E. Vedeneeva 181, 12-16 (1985).
4.  A. A. Khrapkov, Wiener-Hopf Method in Mixed Elasticity Theory Problems (VNIIG, St. Petersburg, 2001).
5.  W. T. Koiter, "On the Diffusion of Load from a Stiffener into a Sheet," Quart. J. Mech. Appl. Math. 8 (2), 164-178 (1955).
6.  J. B. Alblas and W. J. J. Kuypers, "On the Diffusion of Load from a Stiffener into an Infinite Wedge-Shaped Plate," App. Sci. Res. Sec. A 15 (1), 429-439 (1965-1966).
7.  A. I. Kalandiia, "Stress Conditions in Plates Reinforced by Stiffening Ribs," "On Stress State in Plated Reinforces by Stiffeners," Prikl. Mat. Mekh. 33 (3), 538-543 (1969) [J. Appl. Math. Mech. (Engl. Transl.) 33 (3), 523-529 (1969)].
8.  A. I. Kalandiya, Mathematical Methods of Two-Dimensional Elasticity (Nauka, Moscow, 1973) [in Russian].
9.  G. Ya. Popov and L. Ya. Tikhonenko, "Two-Dimensional Problem of the Contact between a Semi-Infinite Beam and an Elastic Wedge," Prikl. Mat. Mekh. 38 (2), 312-320 (1974) [J. Appl. Math. Mech. (Engl. Transl.) 38 (2), 284-292 (1974)].
10.  R. D. Bantsuri, "A Contact Problem for a Wedge with Elastic Bracing," Dokl. Akad. Nauk SSSR 211 (4), 797-800 (1973) [Sov. Math. Dokl. (Engl. Transl.) 18, 561-562 (1973)].
11.  R. Muki and E. Sternberg, "On the Diffusion of Load From a Transverse Tension Bar Into a Semi-Infinite Elastic Sheet," J. Appl. Mech. 35 (4), 737-746 (1968) [Prikl. Mekh. Tr. Amer. Obshch. Inzh.-Mekh. Ser. E (Russ. Transl.) 35 (4), 124-135 (1968)].
12.  V. M. Alexandrov and S. M. Mkhitaryan, Contact Problems for Bodies with Thin Coatings and Interlayers (Nauka, Moscow, 1983) [in Russian].
13.  E. I. Grigolyuk and V. M. Tolkachev, Contact Problems of Theory of Plates and Shells (Mashinostroenie, Moscow, 1980) [in Russian].
14.  M. A. Grekov, Singular Plane Problem of Elasticity (Izd-vo SPb. Univ., St. Petersburg, 2001) [in Russian].
15.  H.-H. Yu and J. W. Hutchinson, "Influence of Substrate Compliance on Buckling Delamination of Thin Films," Int. J. Fract. 113, 39-55 (2002).
16.  B. Cotterell and Z. Chen, "Buckling and Cracking of Thin Films on Compliant Substrates under Compression," Int. J. Fract. 104 (2), 169-179 (2000).
17.  B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon Press, London etc., 1958; Mir, Moscow, 1962).
18.  V. M. Entov and R. L. Salganik, "On the Prandtl Brittle Fracture Model," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 87-99 (1968) [Mech. Solids (Engl. Transl.)].
19.  R. L. Salganik, "Thin Layer with Jumpwise Characteristics in and Infinite Elastic Body," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 154-163 (1977) [Mech. Solids (Engl. Transl.)].
20.  G. Doetsch, Handbook der Laplace-Transformation (Birkhäuser, Basel, 1946; Fizmatlit, Moscow, 1958).
21.  R. L. Salganik, "The Brittle Fracture of Cemented Bodies," Prikl. Mat. Mekh. 27 (5), 957-962 (1963) [J. Appl. Math. Mech. (Engl. Transl.) 27 (5), 1468-1478 (1963)].
22.  B. M. Malyshev and R. L. Salganik, "The Strength of Adhesive Joints Using the Theory of Crack," Int. J. Fract. Mech. 1 (2), 114-128 (1965).
Received 04 August 2013
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100