Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2014-6pp.649-656

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
A.E. Mayer, "Dynamic Shear and Tensile Strength of Iron: Continual and Atomistic Simulation," Mech. Solids. 49 (6), 649-656 (2014)
Year 2014 Volume 49 Number 6 Pages 649-656
DOI 10.3103/S0025654414060065
Title Dynamic Shear and Tensile Strength of Iron: Continual and Atomistic Simulation
Author(s) A.E. Mayer (Chelyabinsk State University, ul.Br.Kashiribykh 129, Chelyabinsk, 454078 Russia,
Abstract In this paper, continual and atomistic simulations are used to investigate the shear and spall strength of iron under high-rate strain conditions. The continual simulation is based on the use of models of dislocation plasticity and fracture due to formation and growth of microcracks and cavities; the molecular-dynamic simulation is based on the use of the LAMMPS software. The obtained results are analyzed in the light of experimental data for the high-speed impact and irradiation of iron films by ultrashort pulses of intense laser radiation.
Keywords high-rate strain, plastic flow, spall fracture, iron, molecular dynamics, continual theory of dislocations, fracture model
1.  G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer, "Dynamic Yield and Tensile Strength of Aluminum Single Crystals at Temperatures up to the Melting Point," J. Appl. Phys. 90 (1), 136-143 (2001).
2.  G. I. Kanel, V. E. Fortov, and S. V. Razorenov, "Shock Waves in Condensed-State Physics," Uspekhi Fiz. Nauk 177 (8), 809-830 (2007) [Phys. Uspekhi (Engl. Transl.) 50 (8), 771-791 (2007)].
3.  G. V. Garkushin, O. N. Ignatova, G. I. Kanel, et al., "Submicrosecond Strength of Ultrafine-Grained Materials," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 155-163 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 624-632 (2010)].
4.  E. B. Zaretsky and G. I. Kanel, "Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point," J. Appl. Phys. 114, 083511 (2013).
5.  S. I. Ashitkov, M. B. Agranat, G. I. Kanel, et al., "Behavior of Aluminum near an Ultimate Theoretical Strength in Experiments with Femtosecond Laser Pulses," Pis'ma Zh. Eksp. Teor. Fiz. 92 (8), 568-573 (2010) [JETP Lett. (Engl. Transl.) 92 (8), 516-520 (2010)].
6.  S. I. Ashitkov, P. S. Komarov, M. B. Agranat, et al., "Achievement of Ultimate Values of the Bulk and Shear Strengths of Iron Irradiated by Femtosecond Laser Pulses," Pis'ma Zh. Eksp. Teor. Fiz. 98 (7), 439-444 (2013) [JETP Lett. (Engl. Transl.) 98 (7), 384-388 (2013)].
7.  R. F. Smith, J. H. Eggert, R. E. Rudd, et al., "High Strain-Rate Plastic Flow in Al and Fe," J. Appl. Phys. 110, 123515 (2011).
8.  V. H. Whitley, S. D. MaGrane, D. E. Eakins, et al., "The Elastic-Plastic Response of Aluminum Films to Ultrafast Laser-Generated Shocks," J. Appl. Phys. 109, 013505 (2011).
9.  Y. M. Gupta, J. M. Winey, P. B. Trivedi, et al., "Large Elastic Wave Amplitude and Attenuation in Shocked Pure Aluminum," J. Appl. Phys. 105 (3), 036107 (2009).
10.  J. M. Winey, B. M. LaLone, P. B. Trivedi, and Y. M. Gupta, "Elastic Wave Amplitudes in Shock-Compressed Thin Polycrystalline Aluminum Samples," J. Appl. Phys. 106 (7), 073508 (2009).
11.  G. I. Kanel, S. V. Razorenov, G. V. Garkushin, et al., "Deformation Resistance and Fracture of Iron over a Wide Strain Rate Range," Fiz. Tverd. Tela 56 (8), 1518-1522 (2014) [Phys. Solid State (Engl. Transl.) 56 (8), 1569-1573 (2014)].
12.  V. S. Krasnikov, A. E. Mayer, and A. P. Yalovets, "Dislocation Based High-Rate Plasticity Model and Its Application to Plate-Impact and Ultra Short Electron Irradiation Simulations," Int. J. Plast. 27 (5), 1294-1308 (2011).
13.  A. E. Mayer, K. V. Khishchenko, P. R. Levashov, and P. N. Mayer, "Modeling of Plasticity and Fracture of Metals at Shock Loading," J. Appl. Phys. 113 (19), 193508 (2013).
14.  A. E. Mayer, "Dynamic Fracture of Metals in Wide Range of Strain Rates," in Proc. 13th Int. Conf. on Fracture, Beijing, China, 2013, Paper #S12-012. URL:
15.  A. E. Mayer, P. N. Mayer, and V. S. Krasnikov, "Dynamic Fracture of Metals in Solid and Liquid States under Ultra-Short Intensive Electron or Laser Irradiation," Procedia Mater. Sci. 3C, 1890-1895 (2014).
16.  LAMMPS Molecular Dynamics Simulator. URL:
17.  V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, "Wide-Range Multi-Phase Equations of State for Metals," Nucl. Instrum. Methods Phys. Res. A 415, 604-608 (1998).
18.  A. M. Kosevich, "Dynamical Theory of Dislocations," Uspekhi Fiz. Nauk 84 (4), 579-609 (1964) [Sov. Phys. Uspekhi (Engl. Transl.) 7 (6), 837-854 (1965)].
19.  A. P. Yalovets, "Calculation of Flows of a Medium Induced by High-Power Beams of Charged Particles," Zh. Prikl. Mekh. Tekhn. Fiz. 38 (1), 151-166 (1997) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 38 (1), 137-150 (1997)].
20.  R. F. Smith, J. H. Eggert, R. E. Rudd, et al., "High Strain-Rate Plastic Flow in Al and Fe," J. Appl. Phys. 110, 123515 (2011).
21.  M. S. Daw and M. I. Baskes, "Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals," Phys. Rev. B 29 (12), 6443 (1984).
22.  G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, "Computer Simulation of Point Defect Properties in Dilute Fe-Cu Alloy Using a Many-Body Interatomic Potential," Phil. Mag. A 75 (3), 713-732 (1997).
23.  M. I. Mendelev, S. Han, D. J. Srolovitz, et al., "Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron," Phil. Mag. A 83 (35), 3977-3994 (2003).
24.  G. E. Norman and A. V. Yanilkin, "Homogeneous Nucleation of Dislocations," Fiz. Tverd. Tela 53 (8), 1536-1541 (2011) [Phys. Solid State (Engl. Transl.) 53 (8), 1614-1619 (2011)].
25.  A. E. Mayer, Dynamic Processes and Structure Transformations in Metals under Radiation by Intense Flows of Charged Particles, Doctoral Dissertation in Physics and Mathematics (ChelGU, Chelyabinsk, 2011) [in Russian].
26.  R. Komanduria, N. Chandrasekaran, and L. M. Raff, "Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel," Int. J. Mech. Sci. 43, 2237-2260 (2001).
Received 20 July 2014
Link to Fulltext
<< Previous article | Volume 49, Issue 6 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100