Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-4pp.389-402

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 4 / 2014 | Next article >>
L.A. Agalovyan, R.S. Gevorgyan, and A.G. Sargsyan, "Comparative Asymptotic Analysis of Coupled and Uncoupled Thermoelasticity," Mech. Solids. 49 (4), 389-402 (2014)
Year 2014 Volume 49 Number 4 Pages 389-402
DOI 10.3103/S0025654414040049
Title Comparative Asymptotic Analysis of Coupled and Uncoupled Thermoelasticity
Author(s) L.A. Agalovyan (Institute of Mechanics, National Academy of Sciences of the Republic of Armenia, pr-t Marshala Bagramyana 24B, Erevan, 375019 Republic of Armenia, aghal@mechins.sci.am)
R.S. Gevorgyan (Institute of Mechanics, National Academy of Sciences of the Republic of Armenia, pr-t Marshala Bagramyana 24B, Erevan, 375019 Republic of Armenia, gevorgyanrs@mail.ru)
A.G. Sargsyan (Institute of Mechanics, National Academy of Sciences of the Republic of Armenia, pr-t Marshala Bagramyana 24B, Erevan, 375019 Republic of Armenia, armin.sa@bk.ru)
Abstract The asymptotic solution of the three-dimensional dynamic of coupled thermoelasticity problem (with the mutual influence of the strain and temperature fields taken into account) for an isotropic rectangular plate is used to perform a comparative analysis of the results obtained according to this theory and the theory of temperature stresses. The parameters whose values affect the applicability of these theories and of the applied theory used to solve quasistatic problems of thermoelasticity are obtained.
Keywords asymptotic solution, thermoelasticity, coupled and uncoupled problems, comparative analysis
References
1.  W. Nowacki, Dynamic Problems of Thermo elasticity (PWN, Warszawa, 1966; Mir, Moscow, 1970).
2.  A. D. Kovalenko, Foundations of Thermoelasticity (Naukova Dumkla, Kiev, 1970) [in Russian].
3.  A. C. Eringen, Mechanics of Continua (Huntington, New York, 1980).
4.  S. A. Lychev, A. V. Manzhirov, and S. V. Joubert, "Closed Solutions of Boundary-Value Problems of Coupled Thermoelasticity," Izv. Ross. Nauk. Mekh. Tverd. Tela, No. 4, 138-154 (2010) [Mech. Solids (Engl. Transl.) 45 (4), 610-623 (2010)].
5.  L. A. Agalovyan, Asymptotic Theory of Anisotropic Plates and Shells (Nauka, Moscow, 1997) [in Russian].
6.  I. E. Zino and E. A. Tropp, Asymptotic Methods in Problems of Heat Conduction and Thermoelasticity (Izd-vo LGU, Leningrad, 1978) [in Russian].
7.  L. A. Agalovyan and R. S. Gevorgyan, Nonclassical Boundary-Value Problems of Anisotropic Layered Beams, Plates, and Shells (Gitutyun NAN RA, Erevan, 2005) [in Russian].
8.  R. S. Gevorgyan, "Asymptotic Solutions of Coupled Dynamic Problems Of Thermoelasticity for Isotropic Plates," Prikl. Mat. Mekh. 72 (1), 148-156 (2008) [J. Appl. Math. Mech. (Engl. Transl.) 72 (1), 87-91 (2008)].
9.  Yu. V. Nemirovskii and A. P. Yankovskii, "A Method of Asymptotic Expansions of the Solutions of the Steady Heat Conduction Problem for Laminated Non-Uniform Anisotropic Plates," Prikl. Mat. Mekh. 72 (1), 157-175 (2008) [J. Appl. Math. Mech. (Engl. Transl.) 72 (1), 92-101 (2008)].
10.  L. A. Agalovyan and R. S. Gevorgyan, "Asymptotic Solutions of Dynamic Problems of Thermoelasticity for a Layered Thin Body of Variable Thickness Consisting of Anisotropic Inhomogeneous Materials," Izv. NAN RA. Ser. Mekh. 62 (3), 17-28 (2009).
11.  L. A. Agalovyan, "Elastic Boundary Layer for a Class of Plane Problems," MezhVUZ. Sb. Nauch. Trudov. Mekh. (Izd-vo EGU, Erevan), No. 3, 51-58 (1984).
12.  R. S. Gevorgyan, "Boundary Layer Asymptotics for a Class of Boundary-Value Problems for Anisotropic Plates," Izv. Akad. Armyan. SSR. Ser. Mekh. 37 (6), 3-15 (1984).
13.  L. A. Agalovyan and L. M. Khalatyan, "Asymptotics of Forced Oscillations of an Orthotropic Strip under Mixed Boundary Conditions," Dokl. NAN RA 99 (4), 315-321 (1999).
14.  L. A. Agalovyan, "On the Structure of the Solution of a Class of Plane Elasticity Problems for an Anisotropic Body," MezhVUZ. Sb. Nauch. Trudov. Mekh. (Izd-vo EGU, Erevan), No. 2, 7-12 (1982).
15.  L. A. Agalovyan and R. S. Gevorgyan, "Asymptotic Solution of the First Boundary-Value Problem of the Theory of Elasticity of the Forced Vibrations of an Isotropic Strip," Prikl. Mat. Mekh. 72 (4), 663-643 (2008) [J. Appl. Math. Mech. (Engl. Transl.) 72 (4), 452-460 (2008)].
16.  L. A. Agalovyan and T. V. Zakaryan, "On the Solution of the First Dynamic Spatial Boundary-Value Problem for an Orthotropic Rectangular Plate," Dokl. NAN RA 109 (4), 304-309 (2009).
Received 24 August 2010
Link to Fulltext
<< Previous article | Volume 49, Issue 4 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100