Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-1pp.99-103

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 1 / 2014 | Next article >>
D.V. Georgievskii, "Compatibility Equations in Systems Based on Generalized Cauchy Kinematic Relations," Mech. Solids. 49 (1), 99-103 (2014)
Year 2014 Volume 49 Number 1 Pages 99-103
DOI 10.3103/S0025654414010117
Title Compatibility Equations in Systems Based on Generalized Cauchy Kinematic Relations
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia, georgiev@mech.math.msu.su)
Abstract We obtain integrability conditions for systems of linear partial differential equations based on generalized Cauchy kinematic relations. The generalization pertains to both the dimension of the Euclidean space and the rank of the object corresponding to displacement vector in the classical case. The integrability conditions, or the compatibility equations, are written out as the conditions of vanishing of all components of either the generalized incompatibility tensor introduced here or the generalized Riemann-Christoffel tensor obtained from the incompatibility tensor by convolutions with the Levi-Civita symbols. The ranks and number of independent components of these tensors are found.
Keywords compatibility equations, integrability conditions, incompatibility tensor, Riemann-Christoffel tensor, Cauchy relations
References
1.  Yu. N. Rabotnov, Mechanics of Deformable Solids (Nauka, Moscow, 1988) [in Russian].
2.  B. E. Pobedrya, Numerical Methods in Elasticity and Plasticity Theory (Izd-vo MGU, Moscow, 1995) [in Russian].
3.  B. E. Pobedrya and D. V. Georgievskii, "Equivalence of Formulations for Problems in Elasticity Theory in Terms of Stresses," Rus. J. Math. Phys. 13 (2), 203-209 (2006).
4.  C. Amrouche, P. G. Ciarlet, L. Gratie, and S. Kesavan, "On the Characterization of Matrix Fields as Linearized Strain Tensor Fields," J. Math. Purcs Appl. 86, 116-132 (2006).
5.  P. G. Ciarlet, P. Ciarlet (Jr.), G. Geymonat, and F. Krasucki, "Characterization of the Kernel of the Operator CURL CURL," C. R. Acad. Sci. Paris. Ser. I 344, 305-308 (2007).
6.  D. V. Georgievskii and M. V. Shamolin, "Levi-Civita Symbols, Generalized Vector Products, and New Integrable Cases in Mechanics of Multidimensional Bodies," J. Math. Sci. 187 (3), 280-299 (2012).
7.  D. V. Georgievskii, "General Solutions of Weakened Equations in Terms of Stresses in the Theory of Elasticity," "General Solutions of Elasticity Systems in Stresses not Equivalent to the Classical Elasticity," Vestnik Moskov. Univ. Ser. I. Mat. Mekh. 67 (6), 26-32 (2012) [Moscow Univ. Mech. Bull. (Engl. Transl.) 68 (1), 1-7 (2013)]
Received 25 August 2013
Link to Fulltext
<< Previous article | Volume 49, Issue 1 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100