Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2014-1pp.40-48

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 49, Issue 1 / 2014 | Next article >>
I.E. Keller, "Prandtl-Meyer Solutions of Viscoplasticity Equations with Negative Strain Rate Sensitivity," Mech. Solids. 49 (1), 40-48 (2014)
Year 2014 Volume 49 Number 1 Pages 40-48
DOI 10.3103/S0025654414010051
Title Prandtl-Meyer Solutions of Viscoplasticity Equations with Negative Strain Rate Sensitivity
Author(s) I.E. Keller (Perm National Research Polytechnic University, Komsomolsky pr-t 29, Perm, 614990 Russia, kie@icmm.ru)
Abstract We present a further study of a viscoplasticity model with nonmonotonic strain rate dependence ensuring the complete integrability of the two-dimensional equilibrium and consistency equations. The considered nonlinear equations change their type from hyperbolic to elliptic at a certain critical value of the strain rate intensity; the type change is accompanied by the formation of an interphase in the solid. This model is of interest for describing spatial autowave processes in active continua, and the integrability of equations allows one to construct efficient methods for the numerical solution of boundary value problems and ensures the existence of closed-form solutions.

The present paper shows that the considered material function satisfies a criterion for the separation of the system of these equations into two noninteracting subsystems. We derive kinematic equations on the characteristics. We obtain and analyze centered self-similar solutions (Prandtl-Meyer solutions) in the domain of hyperbolicity of the equations, which describe flows in convergent and divergent channels.
Keywords viscoplasticity, negative strain rate sensitivity, complete integrability, kinematic relation on characteristics, Prandtl-Meyer solution
References
1.  I. E. Keller, "Integrability of the Equilibrium and Compatibility Equations for a Viscoplastic Medium with Negative Strain Rate Sensitivity," Dokl. Ross. Akad. Nauk 451 (6), 643-646 (2013) [Dokl. Phys. (Engl. Transl.) 58 (8), 362-365 (2013)].
2.  M. Lebyodkin, L. Dunin-Barkowskii, Y. Bréchet, et al., "Spatio-Temporal Dynamics of the Portevin-Le Chatelier Effect: Experiment and Modelling," Acta Mater. 48 (10), 2529-2541 (2000).
3.  A. I. Rudskoi and Ya. I. Rudaev, Mechanics of Dynamic Superplasticity of Aluminum Alloys (Nauka, St.Petersburg, 2009) [in Russian].
4.  S. L. Bazhenov and E. P. Kovalchuk, "Self-Oscillating Plastic Deformation of Polymers," Dokl. Ross. Akad. Nauk 417 (3), 353-356 (2007) [Dokl. Phys. Chem. (Engl. Transl.) 417 (1), 308-301 (2007)].
5.  J. H. Dieterich, "Modeling of Rock Friction 1. Experimental Results and Constitutive Equations," J. Geophys. Res. 84, 2161-2168 (1979).
6.  A. A. Il'yushin, "Deformation of Viscoplastic Bodies," Ucheb. Zap. MGU. Mekh. No. 39, 3-81 (1940).
7.  A. M. Freudental and H. Geiringer, The Mathematical Theories of Inelastic Continuum (Springer-Verlag, Berlin-Goettingen-Heidelberg, 1958; Fizmatgiz, Moscow, 1962)
8.  P. K. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978) [in Russian].
9.  P. K. Rashevskii, Geometric Theory of Partial Differential Equations (Gostekhizdat, Moscow-Leningrad, 1947) [in Russian].
10.  L. V. Ovsyannikov, Lectures in Foundations of Gas Dynamics (IKI, Moscow-Izhevsk, 2003) [in Russian].
11.  O. I. Bogoyavlenskij, "Decoupling Problem for Systems of Quasi-linear PDE's," Commun. Math. Phys., No. 269, 545-556 (2007).
12.  A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].
Received 03 September 2013
Link to Fulltext
<< Previous article | Volume 49, Issue 1 / 2014 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100