Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-6pp.649-658

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 6 / 2013 | Next article >>
A.V. Zvyagin, "Critical Velocity in a Contact Elasticity Problem for the Case of Transonic Punch Velocity," Mech. Solids. 48 (6), 649-658 (2013)
Year 2013 Volume 48 Number 6 Pages 649-658
DOI 10.3103/S0025654413060083
Title Critical Velocity in a Contact Elasticity Problem for the Case of Transonic Punch Velocity
Author(s) A.V. Zvyagin (Lomonosov Moscow State University, MGU 1, Vorob'evy Gory, Moscow, 119991 Russia, zvsasha@rambler.ru)
Abstract The paper deals with a dynamic contact problem in the presence of friction forces in the transonic range of punch velocities, where the punch velocity exceeds the transverse wave velocity but is still less than the longitudinal wave velocity. It is shown that there exists a critical velocity at which the solution structure and the character of its behavior on the boundary of the contact region change. This velocity is sqrt2 times the transverse wave velocity. The existence of this velocity is possibly related to the surface wave velocity under restricted deformation conditions.
Keywords contact problem, elasticity, dry friction, transonic motion, surface wave
References
1.  L. A. Galin, Contact Problems of Elasticity (Gostekhizdat, Moscow, 1953) [in Russian].
2.  L. A. Galin, Contact Problems of Elasticity and Viscoelasticity (Nauka, Moscow, 1980) [in Russian].
3.  A. J. Rosakis, O. Samudrala, and D. Coker, "Cracks Faster than the Shear Wave Speed," www.sciencemag.org, Science 284 (5418), 1337-1340 (1999).
4.  E. A. Brener, S. V. Malinin, and V. I. Marchenko, "Fracture and Friction: Stick-Slip Motion," arXiv:cond-mat/0411481v1, 1-12 (2004).
5.  Su Hao, Wing Kam Liu, P. A. Klein, and A. J. Rosakis, "Modeling and Simulation of Intersonic Crack Growth," Int. J. Solids Struct., 41 (78), 1773-1799 (2004).
6.  F. D. Gakhov, Boundary Value Problems (Nauka, Moscow, 1977) [in Russian].
7.  A. V. Zvyagin, "The Supersonic Motion of a Rigid Body in an Elastic Medium with Friction," Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 4, 52-61 (2007) [Moscow Univ. Mech. Bull. (Engl. Transl.) 62 (4), 99-109 (2007)].
8.  A. V. Zvyagin and G. A. Romashov, "Formation of Separation Regions in the Presence of Asymmetry of the Body Motion in an Elastic Medium," in Shevchenko Spring. Proceedings of Scientific International Interdisciplinary Conference of Students, Postgraduates, and Young Scientists (Logos, Kiev, 2010), No. VIII, p. 444.
9.  A. V. Zvyagin and G. A. Romashov, "Surface Waves under Constrained Deformation," Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 4, 59-62 (2011) [Moscow Univ. Mech. Bull. (Engl. Transl.) 67 (2), 43-45 (2011)].
Received 14 December 2010
Link to Fulltext
<< Previous article | Volume 48, Issue 6 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100