Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-5pp.514-519

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
V.A. Babeshko, O.M. Babeshko, O.V. Evdokimova, A.G. Fedorenko, and V.L. Shestopalov, "Cracked Coating Problem in Nanomaterials and Seismology," Mech. Solids. 48 (5), 514-519 (2013)
Year 2013 Volume 48 Number 5 Pages 514-519
DOI 10.3103/S0025654413050063
Title Cracked Coating Problem in Nanomaterials and Seismology
Author(s) V.A. Babeshko (Kuban State University, Stavropol'skaya 149, Krasnodar, 350040 Russia, babeshko41@mail.ru, babeshko@kubsu.ru)
O.M. Babeshko (Kuban State University, Stavropol'skaya 149, Krasnodar, 350040 Russia)
O.V. Evdokimova (South Scientific Center, Russian Academy of Sciences, Chekhova 41, Rostov-on-Don, 344006 Russia)
A.G. Fedorenko (South Scientific Center, Russian Academy of Sciences, Chekhova 41, Rostov-on-Don, 344006 Russia)
V.L. Shestopalov (South Scientific Center, Russian Academy of Sciences, Chekhova 41, Rostov-on-Don, 344006 Russia, vlshestopalov@gmail.com)
Abstract A method for studying the stress-strain state of block structures typical of materials with coating, including nanomaterials, is presented under the assumption that the coating consists of two-dimensional horizontally arranged different-type blocks contacting with each other along their boundaries. The coating is located on the surface of a three-dimensional linearly deformable substrate. The block structures in question are subjected to an external action (in particular, vertically harmonic). This is also typical of lithospheric plate structures, whose stress-strain state can be studied to obtain information about the seismicity of territories. In the present paper, the topological approach in [1] is refined and used to derive new integral equations, which permit studying the stress-strain state of such block structures.
Keywords block structure, stress-strain state, coating, crack, exterior form, pseudodifferential equation
References
1.  V. A. Babeshko, J. A. Ritzer, O. V. Evdokimova, et al., "A Topological Approach to the Theory of Forecast of Seismicity Based on a Mechanical Conception," Dokl. Ross. Akad. Nauk 450 (2), 166-170 (2013) [Dokl. Phys. (Engl. Transl.) 58 (5), 181-185 (2013)].
2.  I. I. Vorovich, V. M. Alexandrov, and V. A. Babeshko, Nonclassical Mixed Problems of Elasticity (Nauka, Moscow, 1974) [in Russian].
3.  I. I. Vorovich and V. A. Babeshko, Dynamical Mixed Problems of Elasticity for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].
4.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Differential Factorization Method in Block Structures and Nanostructures," Dokl. Ross. Akad. Nauk 415 (5), 596-599 (2007) [Dokl. Math. (Engl. Transl.) 76 (1), 614-617 (2007)].
5.  O. V. Evdokimova, O. M. Babeshko, and V. A. Babeshko, "On the Differential Factorization Method in Inhomogeneous Problems," Dokl. Ross. Akad. Nauk 418 (3), 321-323 (2008) [Dokl. Math. (Engl. Transl.) 77 (1), 140-142 (2008)].
6.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Automorphism and Pseudo-Differential Equations in the Block-Element Method," Dokl. Ross. Akad. Nauk 438 (5), 623-625 (2011) [Dokl. Phys. (Engl. Transl.) 56 (6), 348-351 (2011)].
7.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Topological Method of Solving Boundary Value Problems and Block Elements," Dokl. Ross. Akad. Nauk 449 (6), 657-660 (2013) [Dokl. Phys. (Engl. Transl.) 58 (4), 152-155 (2013)].
8.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Certain General Properties of Block Elements," Dokl. Ross. Akad. Nauk 442 (1), 37-40 (2012) [Dokl. Phys. (Engl. Transl.) 57 (1), 14-17 (2012)].
9.  V. A. Babeshko, O. M. Babeshko, and O. V. Evdokimova, "On the Theory of a Block Element," Dokl. Ross. Akad. Nauk 427 (2), 183-186 (2009) [Dokl. Phys. (Engl. Transl.) 54 (7), 329-332 (2009)].
10.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "About Polyhedral and Convex Block Elements," Dokl. Ross. Akad. Nauk 432 (5), 620-623 (2010) [Dokl. Phys. (Engl. Transl.) 55 (6), 292-296 (2010)].
11.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Block Elements with a Cylindrical Boundary in Macro- and Nanostructures," Dokl. Ross. Akad. Nauk 440 (6), 756-759 (2011) [Dokl. Phys. (Engl. Transl.) 56 (10), 544-547 (2011)].
12.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Block Elements with a Nonplanar Boundary," Dokl. Ross. Akad. Nauk 444 (5), 501-505 (2012) [Dokl. Phys. (Engl. Transl.) 57 (6), 245-249 (2012)]
13.  V. A. Babeshko, Generalized Factorization Method in Spatial Dynamical Mixed Problems in Elasticity (Moscow, Nauka, 1984) [in Russian].
14.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Virus Theory of Certain Natural Anomalies," Dokl. Ross. Akad. Nauk 447 (6), 624-628 (2012) [Dokl. Phys. (Engl. Transl.) 57 (12), 487-491 (2012)].
15.  V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, "Quantum-Mechanical Properties of Block Elements in Nanomaterials," Dokl. Ross. Akad. Nauk 435 (2), 190-194 (2010) [Dokl. Phys. (Engl. Transl.) 55 (11), 568-572 (2012)].
Received 03 June 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 5 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100