Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-4pp.431-438

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
S.V. Kuz'michev, S.A. Kukushkin, and A.V. Osipov, "Elastic Interaction of Point Defects in Crystals with Cubic Symmetry," Mech. Solids. 48 (4), 431-438 (2013)
Year 2013 Volume 48 Number 4 Pages 431-438
DOI 10.3103/S0025654413040110
Title Elastic Interaction of Point Defects in Crystals with Cubic Symmetry
Author(s) S.V. Kuz'michev (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, sergey.kuzmichev@gmail.com)
S.A. Kukushkin (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, kukushkin_s@yahoo.com)
A.V. Osipov (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia)
Abstract The energy of elastic mechanical interaction between point defects in cubic crystals is analyzed numerically. The finite-element complex ANSYS is used to investigate the character of interaction between point defects depending on their location along the crystallographic directions <100>, <110>, <111> and on the distance from the free boundary of the crystal. The numerical results are compared with the results of analytic computations of the energy of interaction between two point defects in an infinite anisotropic medium with cubic symmetry. The interaction between compressible and incompressible defects of general type is studied. Conditions for onset of elastic attraction between the defects, which leads to general relaxation of the crystal elastic energy, are obtained.
Keywords point defect interaction, elastic energy relaxation, dilatation center, heteroepitaxy
References
1.  S. A. Kukushkin and A. V. Osipov, "Thin-Film Heteroepitaxy by the Formation of the Dilatation Dipole Ensemble," Dokl. Ross. Akad. Nauk 444 (3), 266-269 (2012) [Dokl. Phys. (Engl. Transl.) 57 (5), 217-220 (2012)].
2.  S. A. Kukushkin and A. V. Osipov, "A New Mechanism of Elastic Energy Relaxation in Heteroepitaxy of Monocrystalline Films: Interaction of Point Defects and Dilatation Dipoles," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 122-136 (2013) [Mech. Solids (Engl. Transl.) 48 (2), 216-227 (2013)].
3.  S. A. Kukushkin and A. V. Osipov, "A New Method for the Synthesis of Epitaxial Layers of Silicon Carbide on Silicon Owing to Formation of Dilatation Dipoles," J. Appl. Phys. 113 (2), 024909-1-024909-7 (2013).
4.  J. D. Eshelby, "Elastic Inclusions and Inhomogeneities," in Progress in Solid Mechanics, Ed. by I. N. Snedolow, Vol. 2 (1961), pp. 89-140 [Continual Theory of Dislocations (Inostr. Lit-ra, Moscow, 1963)].
5.  I. M. Lifshits and L. N. Rosentsveig, "On Construction of Green's Tensor for the Basic Equation of Elasticity in the Case of Unbounded Elastoanisotropic Medium," Zh. Vych. Mat. Mat. Fiz. 17 (9), 783-791 (1947).
6.  R. D. Mindlin, "Force at a Point in the Interior of Semi-Infinite Solid," in Midwestern Cong. Solid Mech. (1953), pp. 56-59.
7.  P. A. Ostapchuk, "Greens Tensor of a Weakly Anisotropic Cubic Crystal: Efficiency of Point Defect Absorption by Spherical Pore," Fiz. Tverd. Tela 54 (1), 92-98 (2012) [Phys. Solid State (Engl. Transl.) 54 (1), 98-105 (2012)].
8.  V. V. Kokorin, "Elastic Interaction between Dilating Coherent Particles in an Elastoanisotropic Medium," Fiz. Met. Metalloved. 47 (2), 438-440 (1979).
9.  M. A. Krivoglaz, Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals (Nauka, Moscow, 1967; Plenum Press, New York 1969).
10.  A. A. Katsnelson and A. I. Olemskii, Microscopic Theory of Inhomogeneous Structures (Izd-vo MGU, Moscow, 1987) [in Russian].
11.  A. I. Lurie, The Theory of Elasticity (Nauka, Moscow, 1970) [in Russian].
12.  I. M. Lifshits and L. V. Tanatarov, "On Elastic Interaction of Impurity Atoms in Crystal," Fiz. Met. Metalloved. 12 (3), 331-337 (1961).
13.  R. V. Goldstein, K. B. Ustinov, P. S. Shushpannikov, et al., "Evaluating Intrinsic Deformations in Oxygen-Containing Precipitates," Pis'ma Zh. Tekhn. Fiz. 34 (3), 32-38 (2008) [Tech. Phys. Lett. (Engl. Transl.) 34 (2), 106-108 (2008)].
Received 07 April 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100