Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-4pp.405-409

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
D.V. Georgievskii, "Symmetrization of the Tensor Operator of the Compatibility Equations in Stresses in the Anisotropic Theory of Elasticity," Mech. Solids. 48 (4), 405-409 (2013)
Year 2013 Volume 48 Number 4 Pages 405-409
DOI 10.3103/S0025654413040079
Title Symmetrization of the Tensor Operator of the Compatibility Equations in Stresses in the Anisotropic Theory of Elasticity
Author(s) D.V. Georgievskii (Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991 Russia, georgiev@mech.math.msu.su)
Abstract The general form of the term whose addition to the left-hand side of the compatibility equation in stresses in anisotropic elasticity symmetrizes the rank four differential tensor operator of these equations is obtained. In the case of an arbitrary type of anisotropy, this term contains two arbitrary parameters of dimension of elastic compliances. The symmetrized compatibility equations themselves contain only one of these parameters, and the combination of the terms with this parameter can be separated from the terms containing the tensor of elastic compliances.
Keywords compatibility equations, equilibrium equations, anisotropy, elastic compliance, symmetrization
References
1.  B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity (Izd-vo MGU, Moscow, 1995) [in Russian].
2.  B. E. Pobedrya, "A New Formulation of the Problem of the Mechanics of a Deformable Solid in Stresses," Dokl. Akad. Nauk SSSR 253 (2), 295-297 (1980) [Soviet Math. Dokl. (Engl. Transl.) 22 (1), 88-91 (1981)].
3.  D. V. Georgievskii, "Linear Algebraic Symmetrization of the Beltrami-Michel Equations Operator," Dokl. Ross. Akad. Nauk 448 (4), 410-412 (2013) [Dokl. Phys. (Engl. Transl.) 588 (2), 56-58 (2013)].
4.  V. A. Kucher, X. Markenscoff, and M. V. Paukshto, "Some Properties of the Boundary-Value Problem of Linear Elasticity in Terms of Stresses," J. Elasticity 74 (2), 135-145 (2004).
5.  N. M. Borodachev, "Solutions of the Spatial Elasticity Problem in Stresses," Prikl. Mekhanika 42 (8), 3-35 (2006).
6.  M. U. Nikabadze, "On the Compatibility Conditions and Equations of Motion in Micropolar Linear Elasticity," Vestnik Moskov. Univ. Ser. I Mat. Mekh., No. 1, 63-66 (2012) [Moscow Univ. Math. Bull.].
Received 10 January 2013
Link to Fulltext
<< Previous article | Volume 48, Issue 4 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100