Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-3pp.301-316

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 48, Issue 3 / 2013 | Next article >>
N.A. Bazarenko, "Interaction of a Rigid Punch and a Circular Plate with a Fixed Side and a Stress-Free Face," Mech. Solids. 48 (3), 301-316 (2013)
Year 2013 Volume 48 Number 3 Pages 301-316
DOI 10.3103/S0025654413030072
Title Interaction of a Rigid Punch and a Circular Plate with a Fixed Side and a Stress-Free Face
Author(s) N.A. Bazarenko (Rostov State Academy of Agricultural Machinery Industry, pl. Strany Sovetov 1, Rostov-on-Don, 344023 Russia, n_bazarenko@rambler.ru)
Abstract The axisymmetric contact problem of a rigid punch indentation into an elastic circular plate with a fixed side and a stress-free face is considered. The problem is solved by a method developed for finite bodies which is based on the properties of a biorthogonal system of vector functions. The problem is reduced to a Volterra integral equation (IE) of the first kind for the contract pressure function and to a system of two Volterra IE of the first kind for functions describing the derivative of the displacement of the plate upper surface outside the punch and the normal (or tangential) stress on the plate lower fixed surface. The last two functions are sought as the sum of a trigonometric series and a power-law function with a root singularity. The obtained ill-conditioned systems of linear algebraic equations are regularized by introducing small parameters and have a stable solution. A method for solving the Volterra IE is given. The contact pressure functions, the normal and tangential stresses on the plate fixed surface, and the dimensionless indentation force are found. Several examples of a plane punch computation are given.
Keywords biorthogonal function system, SLAE regularization, equivalent boundary conditions, series summation
References
1.  V. M. Alexandrov and N. A. Bazarenko, "The Contact Problem for a Rectangle with Stress-Free Side Faces," Prikl. Mat. Mekh. 71 (2), 340-351 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (2), 305-317 (2007)].
2.  N. A. Bazarenko, "The Contact Problem for Hollow and Solid Cylinders with Stress-Free Faces," Prikl. Mat. Mekh. 72 (2), 328-341 (2008) [J. Appl. Math. Mech. (Engl. Transl.) 72 (2), 214-225 (2008)].
3.  N. A. Bazarenko, "Interaction of a Hollow Cylinder of Finite Length and a Plate with a Cylindrical Cavity with a Rigid Insert," Prikl. Mat. Mekh. 74 (3), 441-454 (2010) [J. Appl. Math. Mech. (Engl. Transl.) 74 (3), 323-333 (2010)].
4.  N. A. Bazarenko, "Interaction of a Rigid Punch with a Base-Secured Elastic Rectangle with Stress-Free Sides," Prikl. Mat. Mekh. 74 (4), 667-680 (2010) [J. Appl. Math. Mech. (Engl. Transl.) 74 (4), 475-485 (2010)].
5.  N. A. Bazarenko, "The Contact Problem for a Circular Plate with a Stress-Free End Face," Prikl. Mat. Mekh. 74 (6), 978-991 (2010) [J. Appl. Math. Mech. (Engl. Transl.) 74 (6), 699-709 (2010)].
6.  N. A. Bazarenko, "Operator Method for Solving the Plane Elasticity Problem for a Strip with Periodic Cuts," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 156-167 (2007) [Mech. Solids (Engl. Transl.) 42 (4), 630-639 (2007)].
7.  H. Neuber, Kerbspannungslehre (Springer, Berlin, 1958) [in German].
8.  V. M. Alexandrov and D. A. Pozharskii, Nonclassical Spatial Problems in Mechanics of Contact Interactions between Elastic Bodies (Factorial, Moscow, 1998) [in Russian].
9.  L. A. Galin (Editor), The Development of Theory of Contact Problems in USSR, (Nauka, Moscow, 1976) [in Russian].
10.  S. M. Aizikovich, V. M. Alexandrov, I. I. Argatov, et al., Mechanics of Contact Interactions, Ed. by I. I. Vorovich and V. M. Alexandrov (Fizmatlit, Moscow, 2001) [in Russian].
11.  M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972; Nauka, Moscow, 1979).
12.  A. F. Ulitko, Method of Vector Eigenfunctions in Spatial Problems of Elasticity (Naukova Dumka, Kiev, 1979) [in Russian].
13.  D. S. Kuznetsov, Special Functions (Vysshaya Shkola, Moscow, 1977) [in Russian]
14.  M. V. Fedoryuk, Saddle-Point Method (Nauka, Moscow, 1977) [in Russian].
15.  I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1971) [in Russian].
16.  N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].
17.  H. Bateman and A. Erdélyi, Higher Transcendental Functions (NcGraw-Hill, New York, 1955; Nauka, Moscow, 1965).
Received 28 November 2011
Link to Fulltext
<< Previous article | Volume 48, Issue 3 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100