Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2013-3pp.254-269

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 48, Issue 3 / 2013 | Next article >>
A.V. Vlakhova, "Constraint Implementation in Wheeled Apparatus Rolling Problems," Mech. Solids. 48 (3), 254-269 (2013)
Year 2013 Volume 48 Number 3 Pages 254-269
DOI 10.3103/S0025654413030035
Title Constraint Implementation in Wheeled Apparatus Rolling Problems
Author(s) A.V. Vlakhova (Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia, vlakhova@mail.ru)
Abstract The models obtained from equations of rolling of an apparatus with small slips of wheels with respect to the supporting plane are considered by passing to the limit of infinite values of rigidity of contact forces (zero values of slip speeds). The conditions under which these equations become the classical nonholonomic wheel no-slip model are discussed. It is shown that, for small angles of turn of the apparatus front wheels about the vertical axis, neglect of slips in the transverse direction is not correct; namely, the limit model is determined by the wheel no-slip conditions in the longitudinal direction and by the primary Dirac constraints arising owing to the degeneration of the Lagrangian of the system. The methods used to decrease the order of equations, where small slips of wheels are taken into account, can be useful for qualitative analysis of motion of wheeled systems and for solving the problems of estimation and control in real time.
Keywords rolling modeling, small slips, small generalized velocities, nonholonomic model, model with primary Dirac constraints
References
1.  V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Editorial URSS, Moscow, 2009) [in Russian].
2.  P. Dirac, "Generalized Hamiltonian Dynamics," in Variational Principles of Mechanics, Ed. by L. S. Polak (Fizmatgiz, Moscow, 1959) [in Russian].
3.  V. V. Nesterentko and A. M. Chervyakov, Singular Lagrangians. Classical Dynamics and Quantization, Preprint No. P2-86-323 (OIYaI, Dubna, 1986) [in Russian].
4.  V. V. Kozlov, "The Problem of Realizing Constraints in Dynamics," Prikl. Mat. Mekh. 56 (4), 692-698 (1992) [J. Appl. Math. Mech. (Engl. Transl.) 56 (4), 594-600 (1992)].
5.  A. B. Vasil'eva, "Asymptotic Methods in the Theory of Ordinary Differential Equations Containing Small Parameters in Front of the Higher Derivatives," Zh. Vych. Mat. Mat. Fiz. 3 (4), 611-642 (1963) [USSR Comput. Math. Math. Phys. (Engl. Trans.) 3 (4), 823-863 (1963)].
6.  I. V. Novozhilov, Fractional Analysis (Izd-vo MGU, Moscow, 1995) [in Russian].
7.  M. A. Levin and N. A. Fufaev, Theory of Rolling of a Deformable Wheel (Nauka, Moscow, 1989) [in Russian].
8.  I. V. Novozhilov and I. S. Pavlov, "An Approximate Mathematical Model of a Wheeled Vehicle," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 196-204 (1997) [Mech. Solids (Engl. Transl.) 31 (2), 164-170 (1997)].
9.  A. V. Vlakhova and I. V. Novozhilov, "On the Wheel Vehicle Drift in the Case of "Locking" and "Slip" of One Wheel." Fund. Prikl. Mat. 11 (7), 11-20 (2005).
10.  A. V. Vlakhova, I. V. Novozhilov, and I. A. Smirnov, "Mathematical Simulation of Skidding," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., No. 6, 44-50 (2007) [Moscow Univ. Mech. Bull. (Engl. Transl.) 62 (6), 165-171 (2007)].
11.  I. V. Novozhilov, P. A. Kruchinin, and M. Kh. Magomedov, "Contact Forces of Interaction between the Wheel and the Supporting Surface," in Collection of Scientific and Methodological Papers, No. 23 (Izd-vo MGU, Moscow, 2000), pp. 86-95 [in Russian].
12.  V. Ph. Zhuravlev, "Dynamics of a Heavy Homogeneous Ball on a Rough Plane," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3-9 (2006) [Mech. Solids (Engl. Transl.) 41 (6), 1-5 (2006)].
13.  V. V. Andronov and V. Ph. Zhuravlev, Dry Friction in Problems of Mechanics (IKI, NITs "Regular and Chaotic Mechanics", Moscow-Izhevsk, 2010) [in Russian].
14.  E. A. Chudakov, Selected Works, Vol. 1: Theory of Motor Cars (Izdat AN SSSR, Moscow, 1961) [in Russian].
15.  V. V. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems (Nauka, Moscow, 1966) [in Russian].
16.  D. E. Okhotsimskii and Yu. G. Martynenko, "New Problems of Dynamics and Control of Motion of Mobile Wheeled Robots," Uspekhi Mekh. 2 (1), 3-46 (2003).
17.  A. S. Litvinov, Controllability and Stability of Motor Cars (Mashinostroenie, Moscow, 1971) [in Russian].
18.  A. Yu. Ishlinskii, Mechanics of Gyroscopic Systems (Izd-vo AN SSSR, Moscow, 1963) [in Russian].
19.  V. Ph. Zhuravlev and D. M. Klimov, Applied Methods in the Theory of Vibrations (Nauka, Moscow, 1988) [in Russian].
Received 01 June 2012
Link to Fulltext
<< Previous article | Volume 48, Issue 3 / 2013 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100