| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 47, Issue 2 / 2012 | Next article >> |
V.S. Zarubin and G.N. Kuvyrkin, "Mathematical Models of Thermomechanics of a Relaxing Solid," Mech. Solids. 47 (2), 252-260 (2012) |
Year |
2012 |
Volume |
47 |
Number |
2 |
Pages |
252-260 |
DOI |
10.3103/S0025654412020124 |
Title |
Mathematical Models of Thermomechanics of a Relaxing Solid |
Author(s) |
V.S. Zarubin (Bauman Moscow State Technical University, 2-ya Baumanskaya 5, Moscow, 105005 Russia, fn2@bmstu.ru)
G.N. Kuvyrkin (Bauman Moscow State Technical University, 2-ya Baumanskaya 5, Moscow, 105005 Russia, mes51@m1.bmstu.ru) |
Abstract |
Mathematical models of thermomechanic processes based on the laws of rational thermodynamics of irreversible processes are considered. Specific characteristics of the continuum nonstationary behavior are shown in the framework of various models of a medium with internal state parameters. |
Keywords |
thermomechanics, mathematical model, relaxation effect, internal state parameter, kinetic equations, phase transition, nanostructure material |
References |
1. | V. S. Zarubin and G. N. Kuvyrkin,
Mathematical Models in Continuum Mechanics and Electrodynamics (Izd-vo MGTU im. Baumana,
Moscow, 2008) [in Russian]. |
2. | V. S. Zarubin and G. N. Kuvyrkin, "A Thermomechanical Model of a
Relaxing Solid Body Subjected to Time-Dependent Loading," Dokl.
Ross. Akad. Nauk 345 (2), 193-195 (1995) [Dokl. Phys.
(Engl. Transl.) 40 (11), 600-602 (1995)]. |
3. | V. S. Zarubin and G. N. Kuvyrkin, "Mathematical Modeling of
Thermomechanical Processes under Intense Thermal Effect,"
Teplofiz. Vysokikh Temp. 41 (2), 300-309 (2003) [High
Temp. (Engl. Transl.) 41 (2), 252-256 (2003)]. |
4. | V. S. Zarubin and G. N. Kuvyrkin,
Mathematical Models of Thermomechanics (Fizmatlit, Moscow, 2002) [in Russian]. |
5. | L. D. Landau and E. M. Lifshitz,
Course of Theoretical Physics. Statistical Physics (Fizmatlit, Moscow, 2001) [in
Russian]. |
6. | L. H. Van Vleck,
Elements of Material Science and Engineering (Pearson Education, India, 1959; Atomizdat, Moscow,
1975). |
7. | V. A. Likhachev, S. L. Kuz'min, and Z. P. Kamentseva,
Shape Memory Effect
(Izd-vo LGU, Leningrad, 1987)
[in Russian]. |
8. | K. Otsuka, K. Simidzu, Yu. Sudzuki, et al.,
Alloys with Shape Memory Effect
(Metallurgiya, Moscow, 1990)
[in Russian]. |
9. | G. N. Kuvyrkin and I. S. Rodikova,
"Thermomechanic Model of Behavior of Metals and Alloys
in the Phase Transition Region,"
Vest. MGTU im. Baumana. Ser. Estestv. Nauki,
No. 1, 65-76 (2006). |
10. | G. N. Kuvyrkin and I. S. Rodikova, "Estimation of Thermomechanic
Properties of Metals and Alloys in the Phase Transition Region,"
Vest. MGTU im. Baumana. Ser. Estestv. Nauki, No. 2, 31-44 (2006). |
11. | R. A. Arutyunyan,
"Possibilities of Sinenergetic Methods in Fracture Mechanics,"
in Contemporary Problems of Strength. Scientific Proc. of 5th Intern. V. A. Likhachev Seminar, Vol. 1
(Novgorod, 2001), pp. 332-337
[in Russian]. |
12. | R. A. Andrievskii and A. V. Rigulya,
Nanostructure Materials
(Izdat. Center "Akademiya", Moscow, 2005)
[in Russian]. |
13. | A. I. Gusev,
Nanomaterials, Nanostructures, Nanotechnologies
(Fizmatlit, Moscow, 2005)
[in Russian]. |
14. | M. J. Biercuk, M. C. Liaguno, M. Radosavljevic, et al.,
"Carbon Nanotube Composites for Thermal Management,"
Appl. Phys. Lett.
80 (15), 2767-2769 (2002). |
15. | V. S. Zarubin,
Applied Problems of Thermal Strength of Structural Elements (Mashinostroenie, Moscow, 1985) [in Russian]. |
|
Received |
23 September 2009 |
Link to Fulltext |
|
<< Previous article | Volume 47, Issue 2 / 2012 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|