Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-2pp.234-241

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 47, Issue 2 / 2012 | Next article >>
A.M. Kovrizhnykh, "Deformation and Fracture of a Material in One-Dimensional Elastoplastic Problems," Mech. Solids. 47 (2), 234-241 (2012)
Year 2012 Volume 47 Number 2 Pages 234-241
DOI 10.3103/S0025654412020100
Title Deformation and Fracture of a Material in One-Dimensional Elastoplastic Problems
Author(s) A.M. Kovrizhnykh (Institute of Mining, Siberian Branch of the Russian Academy of Sciences, Krasny pr-t 54, Novosibirsk, 630091 Russia, amkovr@mail.ru)
Abstract The ideal plasticity model based on the Tresca-Saint-Venant criterion is used to solve one-dimensional problems of deformation and fracture of solids with circular boundaries. A thick-walled cylinder and a hollow sphere under pressure, cylindrical and hollow cavities in an unbounded body, and uniform extension at infinity of a plate with a free circular hole are considered. In simple elastoplastic problems, the proposed approach allows one to determine the value of the maximum external load at the fracture initiation and the motion of the fracture front for a given displacement of points of the contour on which this load acts.
Keywords elastoplastic material, fracture front, ultimate shear plastic strain
References
1.  L. M. Kachanov, Foundations of the Theory of Plasticity (Nauka, Moscow, 1969; North-Holland, Amsterdam, 1971).
2.  V. V. Sokolovskii, The Theory of Plasticity (Vysshaya Shkola, Moscow, 1969) [in Russian].
3.  A. Yu. Ishlinskii and D. D. Ivlev, The Mathematical Theory of Plasticity (Fizmatlit, Moscow, 2001) [in Russian].
4.  N. S. Bulychev, Mechanics of Underground Structures in Examples and Problems (Nedra, Moscow, 1989) [in Russian].
5.  R. V. Goldshtein, "Fracture in Compression," Uspekhi Mekh. 2 (2), 3-20 (2003).
6.  R. V. Goldstein and N. M. Osipenko, "Fracture Structures under Conditions of Intensive Compression," in Problems of Mechanics of Deformable Solids and Rocks (Fizmatlit, Moscow, 2006) [in Russian].
7.  R. V. Goldstein, N. M. Osipenko, and A. V. Chentsov, "To Determination of the Strength of Nanodimensional Objects," Izv. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 164-181 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 453-469 (2008)].
8.  A. M. Kovrizhnykh, "Plastic Deformation of Hardering Materials under Complex Loading," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 140-146 (1986) [Mech. Solids (Engl. Transl.) 21 (4), 146-153 (1986)].
9.  A. M. Kovrizhnykh, "Modification of the Theory of Plastic Flow Based on a Shear-Strain Mechanism," Zh. Prikl. Mekh. Tekhn. Fiz., 23 (6), 133-138 (1982) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 23 (6), 860-865 (1982)].
10.  A. M. Kovrizhnykh, "Limiting Stresses and Strains around Unsupported Mine Workings," Fiz.-Tekh. Probl. Razrab. Polez. Iskopaemykh, No. 2, 28-34 (1984) [J. Mining Sci. (Engl. Transl.) 20 (2), 94-100 (1984)].
Received 12 September 2009
Link to Fulltext
<< Previous article | Volume 47, Issue 2 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100