Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-2pp.167-177

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 47, Issue 2 / 2012 | Next article >>
A.V. Molodenkov and Ya.G. Sapunkov, "A New Class of Analytic Solutions in the Optimal Turn Problem for a Spherically Symmetric Body," Mech. Solids. 47 (2), 167-177 (2012)
Year 2012 Volume 47 Number 2 Pages 167-177
DOI 10.3103/S0025654412020033
Title A New Class of Analytic Solutions in the Optimal Turn Problem for a Spherically Symmetric Body
Author(s) A.V. Molodenkov (Institute for Precision Mechanics and Control, Russian Academy of Sciences Rabochaya 24, Saratov, 410028 Russia, molalexei@yandex.ru)
Ya.G. Sapunkov (Institute for Precision Mechanics and Control, Russian Academy of Sciences Rabochaya 24, Saratov, 410028 Russia, vem@info.sgu.ru)
Abstract The optimal turn problem for a rigid body with a spherical distribution of mass is considered in the quaternion setting. A functional combining the time and the integral magnitude of the control vector modulus used to turn the rigid body is used as the optimality criterion. This problem is solved analytically in the class of conical motions. An example of computations is given.
Keywords rigid body, spacecraft, optimal turn, analytic algorithm, regular precession
References
1.  V. N. Branets and I. P. Shmyglevskii, Application of Quaternions in Problems of Orientation of a Rigid Body (Nauka, Moscow, 1973) [in Russian].
2.  S. L. Scrivener and R. C. Thompson, "Survey of Time-Optimal Maneuvers," J. Guidance, Control, Dyn. 17 (2), 225-233 (1994).
3.  Yu. N. Chelnokov, "Quaternion Solution of Kinematic Problems in Rigid Body Orientation Control - Equations of Motion, Problem Statement, Programmed Motion, and Control," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 7-14 (1993) [Mech. Solids (Engl. Transl.)].
4.  V. N. Branets, M. B. Chertok, and Yu. V. Kaznacheev, "Optimal Turn of a Rigid Body with a Single Axis of Symmetry," Kosmich. Issledovaniya 22 (3), 352-360 (1984) [Cosmic Res. (Engl. Transl.)].
5.  A. N. Sirotin, "Optimal Control of Retargeting of a Symmetrically Rigid Body from a Rest Position to a Rest Position," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 36-47 (1989) [Mech. Solids (Engl. Transl.)].
6.  A. N. Sirotin, "Time-Optimal Retargeting of a Rotating Spherically Symmetric Body with Stopping Its Motion," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 18-27 (1997) [Mech. Solids (Engl. Transl.) 32 (3), 14-21 (1997)].
7.  A. V. Molodenkov, "Quaternion Solution of the Problem of Optimal Turn of a Rigid Body with Spherical Distribution of Mass," in Problems of Mechanics and Control. Collection of Scientific Papers (PGU, Perm, 1995), pp. 122-131 [in Russian].
8.  A. V. Molodenkov, "Solution of the Problem of Optimal Turn of a Spherically Symmetric Spacecraft in One Special Case," in Proc. 6th Intern. Conf. "System Analysis and Control of Extraterrestrial Complexes", Evpatoriya, Krym (MAI, Moscow, 2001), p. 42.
9.  A. V. Molodenkov and Ya. G. Sapunkov, "Special Control Regime in Optimal Turn Problem of Spherically Symmetric Spacecraft," Izv. Ross. Akad. Nauk. Teor. Sist. Upr., No. 6, 47-54 (2009) [J. Comp. Syst. Sci. Int. (Engl. Transl.) 48 (6), 891-898 (2009)].
10.  L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961) [in Russian].
Received 02 June 2010
Link to Fulltext
<< Previous article | Volume 47, Issue 2 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100