Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-3pp.298-303

Archive of Issues

Total articles in the database: 12804
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4760

<< Previous article | Volume 47, Issue 3 / 2012 | Next article >>
D.V. Boiko, L.P. Zheleznov, and V.V. Kabanov, "Studies of Nonlinear Deformation and Stability of Stiffened Oval Cylindrical Shells under Combined Loading by Bending Moment and Boundary Transverse Force," Mech. Solids. 47 (3), 298-303 (2012)
Year 2012 Volume 47 Number 3 Pages 298-303
DOI 10.3103/S0025654412030041
Title Studies of Nonlinear Deformation and Stability of Stiffened Oval Cylindrical Shells under Combined Loading by Bending Moment and Boundary Transverse Force
Author(s) D.V. Boiko (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia, dvboiko@ngs.ru)
L.P. Zheleznov (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia, lev@wsr.ru)
V.V. Kabanov (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia, ni010@yandex.ru)
Abstract The finite-element statement of stability problems for stiffened oval cylindrical shells is presented with the moments and the nonlinearity of their subcritical stress-strain state taken into account. Explicit expressions for the displacements of elements of noncircular cylindrical shells as solids are obtained by integration of the equations derived by equating the linear deformation components with zero. These expressions are used to construct the shape functions of the effective quadrangular finite element of natural curvature, and an efficient algorithm for studying the shell nonlinear deformation and stability is developed. The stability of stiffened oval cylindrical shells is studied in the case of combined loading by a boundary transverse force and a bending moment. The influence of the shell ovality and the deformation nonlinearity on the shell stability is investigated.
Keywords oval shell, stability, combined loading
References
1.  E. I. Grigolyuk and V. V. Kabanov, Stability of Shells (Nauka, Moscow, 1978) [in Russian].
2.  L. P. Zheleznov and V. V. Kabanov, "Finite Element and Algorithm for Studying Nonlinear Deformation and Stability of Noncircular Cylindrical Shells," in Applied Problems of Mechanics of Thin-Walled Structures (Izd-vo MGU, Moscow, 2000), pp. 120-127 [in Russian].
3.  V. V. Kabanov, Stability of Inhomogeneous Cylindrical Shells (Mashinostroenie, Moscow, 1982) [in Russian].
4.  S. V. Astrakharchik, L. P. Zheleznov and V. V. Kabanov, "Study of Nonlinear Deformation and Stability of Shells and Panels of Nonzero Gaussian Curvature," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 102-108 (1994) [Mech. Solids (Engl. Transl.)].
5.  S. V. Astrakharchik and V. V. Kabanov, "Nonlinear Deformation and Stability of Stiffened Cylindrical Shells under Bending," in Spatial Structures in Krasnoyarsk Region (Izd-vo KISI, Krasnoyarsk, 1985), pp. 75-83 [in Russian].
6.  L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces (Fizmatgiz, Moscow, 1959; Pergamon Press, Oxford, 1964).
7.  J. H. Wilkinson and C. Reinsch, Handbook of ALGOL Algorithms. Linear Algebra (Mashinostroenie, Moscow, 1976) [in Russian].
8.  B. P. Demidovich and I. A. Maron, Foundations of Computational Mathematics (Nauka, Moscow, 1966) [in Russian].
Received 17 November 2009
Link to Fulltext
<< Previous article | Volume 47, Issue 3 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100