Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2012-3pp.285-297

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 47, Issue 3 / 2012 | Next article >>
V.S. Aslanov and S.P. Bezglasnyi, "Stability and Instability of Controlled Motions of a Two-Mass Pendulum of Variable Length," Mech. Solids. 47 (3), 285-297 (2012)
Year 2012 Volume 47 Number 3 Pages 285-297
DOI 10.3103/S002565441203003X
Title Stability and Instability of Controlled Motions of a Two-Mass Pendulum of Variable Length
Author(s) V.S. Aslanov (Korolyov Samara State Aerospace University, Moskovskoe sh. 34, Samara, 443086 Russia, aslanov_vs@mail.ru)
S.P. Bezglasnyi (Korolyov Samara State Aerospace University, Moskovskoe sh. 34, Samara, 443086 Russia, bezglasnsp@rambler.ru)
Abstract The problem of parametric control of plane motions of a two-mass pendulum (swing) is considered. The swing model is a weightless rod with two lumped masses one of which is fixed on the rod and the other slides along it within bounded limits. The control is the distance from the suspension point to the moving point. The proposed control law of swing excitation and damping consists in continuously varying the pendulum suspension length depending on the phase state. The stability of various controlled motions, including the motions near the upper and lower equilibria, is studied. The Lyapunov functions that prove the asymptotic stability and instability of the pendulum lower position in the respective cases of the pendulum damping and excitation are constructed for the proposed control law. The influence of the viscous friction forces on the pendulum stable motions and the onset of stagnation regions in the case of its excitation is analyzed. The theoretical results are confirmed by graphical representation of the numerical results.
Keywords two-mass pendulum, controlled system, asymptotic stability, Lyapunov function
References
1.  T. G. Strizhak, Methods for Studying `Pendulum'-Type Dynamical Systems (Nauka, Alma-Ata, 1981) [in Russian].
2.  K. Magnus, Vibrations. Introduction to the Study of Oscillatory Systems (Mir, Moscow, 1982) [in Russian].
3.  S. L. Chechurin, Parametric Vibrations and Stability of Periodic Motion (Izd-vo LGU, Leningrad, 1983) [in Russian].
4.  L. D. Akulenko, Asymptotic Methods of Optimal Control (Nauka, Moscow, 1987) [in Russian].
5.  A. P. Markeev, Theoretical Mechanics (CheRo, Moscow, 1999) [in Russian].
6.  Yu. F. Golubev, Foundations of Theoretical Mechanics (Izd-vo MGU, Moscow, 2000) [in Russian].
7.  A. P. Seyranian, "The Swing: Parametric Resonance," Prikl. Mat. Mekh. 68 (5), 847-856 (2004) [J. Appl. Math. Mech. (Engl. Transl.) 68 (5), 757-764 (2004)].
8.  A. A. Zevin and L. A. Filonenko, "A Qualitative Investigation of the Vibrations of a Pendulum with a Periodically Varying Length and a Mathematical Model of a Swing," Prikl. Mat. Mekh. 71 (6), 989-1003 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (6), 892-904 (2007)].
9.  L. D. Akulenko and S. V. Nesterov, "The Stability of the Equilibrium of a Pendulum of Variable Length," Prikl. Mat. Mekh. 73 (6), 893-901 (2009) [J. Appl. Math. Mech. (Engl. Transl.) 73 (6), 642-647 (2009)].
10.  L. D. Akulenko, "Parametric Control of Vibrations and Rotations of a Compound Pendulum (a Swing)," Prikl. Mat. Mekh. 57 (2), 82-91 (1993) [J. Appl. Math. Mech. (Engl. Transl.) 57 (2), 301-310 (1993)].
11.  E. K. Lavrovskii and A. M. Formal'skii, "Optimal Control of the Pumping and Damping of a Swing," Prikl. Mat. Mekh. 57 (2), 92-101 (1993) [J. Appl. Math. Mech. (Engl. Transl.) 57 (2), 311-320 (1993)].
12.  V. M. Volosov and B. I. Morgunov, Averaging Method in the Theory of Nonlinear Oscillatory Systems (Izd-vo MGU, Moscow, 1971) [in Russian].
13.  L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamlrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969) [in Russian].
14.  I. G. Malkin, Theory of Motion Stability (Nauka, Moscow, 1966) [in Russian].
Received 04 June 2010
Link to Fulltext
<< Previous article | Volume 47, Issue 3 / 2012 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100