Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.788-797

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
A.V. Shekoyan, "Waves in a Solid Medium with Liquid-Filled Pores," Mech. Solids. 46 (5), 788-797 (2011)
Year 2011 Volume 46 Number 5 Pages 788-797
DOI 10.3103/S002565441105013X
Title Waves in a Solid Medium with Liquid-Filled Pores
Author(s) A.V. Shekoyan (Institute of Mechanics, National Academy of Sciences of Republic of Armenia, Marshal Baghramian ave., 24B, Erevan, 375019 Republic of Armenia, ashotshek@mechins.sci.am)
Abstract The dynamic nonlinear theory of deformation of a two-phase medium, a solid with pores filled with a liquid, is developed. The variational principle is used to derive nonlinear equations that take into account the motions of the solid and liquid phases and the porosity variations. All types of nonlinearity, including nonlinear friction, are also taken into account. Formulas for the velocities of the linear and nonlinear waves and the absorption coefficient are derived. The one- and three-dimensional cases are considered. In the three-dimensional case, an equation describing the wave profile evolution is obtained as well as a nonlinear Schrödinger equation. Their solutions are analyzed; soliton-type solutions and solutions for narrow beams are obtained.
Keywords wave, two-phase medium, nonlinearity, solid body, liquid, evolution equation, modulation equation
References
1.  M. A. Biot, "General Theory of Three-Dimensional Consolidation," J. Appl. Phys. 12, 155-164 (1941).
2.  Ya. I. Frenkel, "On the Theory of Seismic and Seismoelectric Phenomena in a Moist Soil," Izv. Akad. Nauk SSSR. Ser. Geogr. Geofiz. 8 (4), 133-149 (1944).
3.  M. A. Biot, "Mechanics of Deformation and Acoustic Propagation in Porous Media," J. Appl. Phys. 33 (4), 1482-1498 (1962).
4.  V. A. Florin, Theory of Consolidation of Ground Masses (Stroiizdat, Moscow, 1948) [in Russian].
5.  G. I. Barenblatt, "On Some Approximate Methods in the Theory of One-Dimensional Unsteady Filtration of Liquid under Elastic Operation Mode," Izv. Akad. Nauk SSSR. OTN. Mekh. Mashinostr., No. 9, 35-49 (1954).
6.  L. Ya. Kosachevskii, "On the Propagation of Elastic Waves in Two-Phase Media," Prikl. Mat. Mekh. 23 (6), 1115-1123 (1959) [J. Appl. Math. Mech. (Engl. Transl.) 23 (6), 1593-1604 (1959)].
7.  M. A. Biot, "General Theory of Acoustic Propagation in Porous Dissipative Media," J. Acoust. Soc. Amer. 34, Pt. 1, 1254-1264 (1962).
8.  V. N. Nikolaevskii, K. S. Basniev, A. T. Gorbunov, and G. A. Zotov, Mechanics of Saturated Porous Media (Nedra, Moscow, 1970) [in Russian].
9.  R. I. Nigmatulin, Foundations of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].
10.  V. N. Nikolaevskii, Geomechanics and Fluid Dynamics. With Applications to Problems of Gas and Oil Strata (Nedra, Moscow, 1996) [in Russian].
11.  V. G. Bykov, Seismic Waves in Porous Saturated Rocks (Dalnauka, Vladivostok, 1999) [in Russian].
12.  N. S. Gorodetskaya, "Wave Attenuation at Symmetric Vibrations of a Porous-Elastic Layer with Free Surfaces," Akust. Vestnik 1 (4), 4-18 (1998).
13.  S. E. Dasso, "Quantifying Uncertainty in Geoacoustic Inversion," J. Acoust. Soc. Amer. 111, Pt. 1 (1), 129-142 (2002).
14.  R. D. Stall, "Velocity Dispersion in Water-Saturated Granular Sediment," J. Acoust. Soc. Amer. 111 (2), 785-793 (2002).
15.  V. V. Gushchin and G. M. Shalashov, "Possibility of Using Nonlinear Seismic Effects in Problems of Vibration Transluscence of the Earth," in Study of the Earth with Nonexplosive Seismic Sources (Nauka, Moscow, 1981), pp. 144-155 [in Russian].
16.  S. L. Lopatnikov and A. H.-D. Cheng, "Macroscopic Lagrangian Formulation of Poroelasticity with Porosity Dynamics," Mech. Phys. Solids 52 (12), 2801-2839 (2004).
17.  M. G. Markov, "Effect of Interfacial Slip on the Kinematic and Dynamic Parameters of Elastic Waves in a Fluid-Saturated Porous Medium," Akust. Zh. 53 (2), 249-253 (2007) [Acoust. Phys. (Engl. Transl.) 53 (2), 213-216 (2007)].
18.  L. A. Molotkov, Study of Wave Propagation in Porous and Cracked Media on the Basis of Effective Biot Models in Layered Media (Nauka, St. Petersburg, 2001) [in Russian].
19.  T. W. Wright, "Elastic Wave Propagation through a Material with Voids," J. Mech. Phys. Solids 46 (10), 2033-2047 (1998).
20.  R. Kumar and S. Choundhary, "Disturbance due to Mechanical Sources in Micropolar Elastic Medium with Voids," J. Sound Vibr. 256 (1), 1-15 (2002).
21.  A. V. Nikolaev and I. N. Galkin (Editors), Problems of Nonlinear Seismicity (Nauka, Moscow, 1987) [in Russian].
22.  A. S. Aleshin, V. V. Gushchin, M. M. Krekov, A. V. Nikolaev, A. V. Sokolov, and G. N. Shalashov, "Experimental Studies of Nonlinear Seismic Surface Waves," Dokl. Akad. Nauk SSSR 260 (3), 574-575 (1981).
23.  V. G. Bykov, Nonlinear Wave Processes in Geological Media (Dal'nauka, Vladivostok, 2000) [in Russian].
24.  A. M. Ionov, V. K. Sirotkin, and E. V. Sulin, "Propagation of Nonlinear Longitudinal Waves in Porous Saturated Media," Zh. Prikl. Mekh. Tekhn. Fiz., 21 (6), 138-144 (1988) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 21 (6), 894-899 (1988)].
25.  V. G. Bykov and V. N. Nikolaevskii, "Nonlinear Geoacoustic Waves in Marine Sediments," Akust. Zh. 36 (4), 606-610 (1990) [Sov. Phys. Acoust. (Engl. Transl.) 36 (4), 342-344 (1990)].
26.  A. G. Bagdoev and A. V. Shekoyan, "Nonlinear Waves in a Two-Component Viscous Medium with Voids," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 91-100 (2004) [Mech. Solids (Engl. Transl.) 39 (3), 73-80 (2004)].
27.  L. I. Sedov, Continuum Mechanics, Vol. 1 (Nauka, Moscow, 1994) [in Russian].
28.  V. L. Berdichevskii, Variational Principles of Continuum Mechanics (Nauka, Moscow, 1983) [in Russian].
29.  L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Nauka, Moscow, 1967; Butterworth-Heinemann, 1980).
30.  L. K. Zarembo and V. A. Krasilnikov, Introduction to Nonlinear Acoustics (Nauka, Moscow, 1966) [in Russian].
31.  A. G. Bagdoev and A. V. Shekoyan, "Nonlinear Waves in a Solid Viscous Medium with Cavities," Akust. Zh. 45 (2), 149-156 (1999) [Acoust. Phys. (Engl. Transl.) 45 (2), 119-126 (1999)].
32.  N. A. Kudryashov, "Bäcklund Transformation for a Fourth-Order Partial Differential Equation with the Burgers-Korteweg-de Vries Nonlinearity," Dokl. Akad. Nauk SSSR 300 (2), 342-344 (1988) [Sov. Phys. Dokl. (Engl. Transl.) 33, 336-338 (1988)].
33.  A. G. Bagdoev, G. Oganyan, and A. V. Shekoyan, "On Some Analytical Solutions of Evolution Equation with Nonstandard Nonlinearity for Current-Conducting Fluid-Saturated Soils," Izv. NAN RA. Mekh. 56 (3), 49-54 (2003).
34.  S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, "Self-Focusing and Diffraction of Light in a Nonlinear Medium," Uspekhi Fiz. Nauk 93 (1), 19-70 (1967) [Sov. Phys. Uspekhi (Engl. Transl.) 10 (5), 609-636 (1968)].
35.  A. G. Bagdoev and A. V. Shekoyan, "Three-Dimensional Nonlinear Waves in Piezodielectrics and Piezosemiconductors," Izv. Akad. Armyan. SSR. Ser. Mat. 34 (4), 3-15 (1981) [Sov. J. Contemp. Math. Anal., Arm. Acad. Sci. (Engl. Transl.)].
36.  M. B. Vinogradov, O. V. Sukhorukov, and A. P. Rudenko, Theory of Waves (Nauka, Moscow, 1979) [in Russian].
Received 31 March 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100