Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.779-787

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
E.L. Kuznetsova, D.V. Tarlakovskii, and G.V. Fedotenkov, "Propagation of Unsteady Waves in an Elastic Layer," Mech. Solids. 46 (5), 779-787 (2011)
Year 2011 Volume 46 Number 5 Pages 779-787
DOI 10.3103/S0025654411050128
Title Propagation of Unsteady Waves in an Elastic Layer
Author(s) E.L. Kuznetsova (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, vida_ku@mail.ru)
D.V. Tarlakovskii (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, tdvhome@mail.ru, tdv902@mai.ru)
G.V. Fedotenkov (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, greghome@mail.ru)
Abstract We consider a plane problem of propagation of unsteady waves in a plane layer of constant thickness filled with a homogeneous linearly elastic isotropic medium in the absence of mass forces and with zero initial conditions. We assume that, on one of the layer boundaries, the normal stresses are given in the form of the Dirac delta function, the tangential stresses are zero, and the second boundary is rigidly fixed. The problem is solved by using the Laplace transform with respect to time and the Fourier transform with respect to the longitudinal coordinate. The normal displacements at an arbitrary point are obtained in the form of finite sums.
Keywords elastic layer, influence function, unsteady elastic waves, Laplace transform, Fourier transform
References
1.  A. G. Gorshkov, A. L. Medvedskii, L. N. Rabinskii, and D. V. Tarlakovskii, Waves in Continuous Media (Fizmatlit, Moscow, 2004) [in Russian].
2.  A. G. Gorshkov and D. V. Tarlakovskii, Dynamic Contact Problems with Moving Boundaries (Nauka, Fizmatlit, Moscow, 1995) [in Russian].
3.  L. I. Slepyan and Yu. S. Yakovlev, Integral Transforms in Unsteady Problems in Mechanics (Sudostroenie, Leningrad, 1980) [in Russian].
4.  V. A. Vestyak and D. V. Tarlakovskii, "Nonstationary Surface Influence Functions for Electromagnetoelastic Half-Plane," in Proc. 15th Intern. Symp. "Dynamical and Technological Problems of Structural and Continuum Mechanics" dedicated to A. G. Gorshkov, Vol. 1 ("PARADIZ" Press, Moscow, 2009), pp. 43-44.
5.  E. L. Kuznetsova and D. V. Tarlakovskii, "Explicit Form of the Lamb Problem Solution at an Arbitrary Point of the Half-Space," in Proc. 12th Intern. Symp. "Dynamical and Technological Problems of Structural and Continuum Mechanics," Selected papers (Izd-vo MAI, Moscow, 2006), pp. 104-120.
Received 17 September 2010
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100