Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.772-778

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
L.A. Gasanova, P.M. Gasanova, and L.Kh. Talybly, "Solution of a Viscoelastic Boundary-Value Problem on the Action of a Concentrated Force in an Infinite Plane," Mech. Solids. 46 (5), 772-778 (2011)
Year 2011 Volume 46 Number 5 Pages 772-778
DOI 10.3103/S0025654411050116
Title Solution of a Viscoelastic Boundary-Value Problem on the Action of a Concentrated Force in an Infinite Plane
Author(s) L.A. Gasanova (Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, F. Agayev 9, Baku, AZ1141 Azerbaijan)
P.M. Gasanova (Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, F. Agayev 9, Baku, AZ1141 Azerbaijan)
L.Kh. Talybly (Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, F. Agayev 9, Baku, AZ1141 Azerbaijan, ltalybly@yahoo.com)
Abstract We formulate a theorem containing the solution of a boundary-value problem of isotropic linear viscoelasticity on the action of a concentrated force in an infinite plane. The two creep functions that are used in the constitutive relations and correspond to the shear and bulk expansion states and assumed to be independent; the general forms of these functions are not specified. Formulas are presented for the stress, strain, and displacement components.
Keywords viscoelasticity, concentrated force, creep function
References
1.  S. P. Timoshenko and J. N. Goodyear, Theory of Elasticity (McGraw-Hill, New York, 1970; Nauka, Moscow, 1975).
2.  H. G. Hahn, Elastizitätstheorie (Teubner, Stuttgart, 1985; Mir, Moscow, 1988).
3.  R. M. Christensen, Theory of Viscoelasticity. An Introduction (Acad. Press, New York, 1971; Mir, Moscow, 1974).
4.  L. K. Talybly, "Boussinesq's Viscoelastic Problems on Normal Concentrated Force on a Half-Space Surface," Mech. Time-Dep. Mater. 14 (3), 253-259 (2010).
5.  F. G. Tricomi, Integral Equations (Interscience Publ., New York, 1957; Izd-vo Inostr. Lit., Moscow, 1960).
6.  A. A. Il'yushin, "Experimental Method of Solving an Integral Equation of the Theory of Viscoelasticity," Mekh. Polim., No. 4, 584-587 (1969) [Polimer Mech. (Engl. Transl.) 5 (4), 506-509 (1969)].
7.  A. A. Il'yushin and B. E. Pobedrya, Foundations of the Mathematical Theory of Thermoviscoelasticity (Nauka, Moscow, 1970) [in Russian].
Received 30 June 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100