Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.766-771

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
D.V. Boiko, L.P. Zheleznov, and V.V. Kabanov, "Study of Nonlinear Deformation and Stability of Reinforced Shells under Combined Loading by a Bending Moment and a Transverse Boundary Force," Mech. Solids. 46 (5), 766-771 (2011)
Year 2011 Volume 46 Number 5 Pages 766-771
DOI 10.3103/S0025654411050104
Title Study of Nonlinear Deformation and Stability of Reinforced Shells under Combined Loading by a Bending Moment and a Transverse Boundary Force
Author(s) D.V. Boiko (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia)
L.P. Zheleznov (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia, lev@wsr.ru)
V.V. Kabanov (Chaplygin Siberian Research Aviation Institute, Polzunova 21, Novosibirsk, 630021 Russia, ni010@yandex.ru)
Abstract We present a finite-element statement for the solution of stability problems for reinforced elliptic cylindrical shells with moment properties and nonlinearity in their precritical stress-strain state taken into account. Integrating the equations obtained by equating the linear strain components with zero, we find explicit expressions for the displacements of elements of noncircular cylindrical shells as rigid bodies. Using these expressions, we construct the shape functions of a four-angle finite element of natural curvature and develop an effective algorithm for studying nonlinear deformation and stability of shells. We study the stability of reinforced elliptic cylindrical shells under combined loading by a transverse boundary force and a bending moment and investigate how the ellipticity of the shells and the nonlinearity of deformation at the precritical stage affect the shell stability.
Keywords noncircular cylindrical reinforced shells, nonlinear deformation, stability, finite element method, transverse force, bending by moment of force
References
1.  E. I. Grigolyuk and V. V. Kabanov, Stability of Shells (Nauka, Moscow, 1978) [in Russian].
2.  L. P. Zheleznov and V. V. Kabanov, "Finite Element and an Algorithm for Studying Nonlinear Deformation and Stability of Noncircular Cylindrical Shells," in Applied Problems of Mechanics of Thin-Walled Structures (Izd-vo MGU, Moscow, 2000), pp. 120-127 [in Russian].
3.  V. V. Kabanov, Stability of Inhomogeneous Cylindrical Shells (Mashinostroenie, Moscow, 1982) [in Russian].
4.  S. V. Astrakharchik, L. P. Zheleznov, and V. V. Kabanov, "Study of Nonlinear Deformation and Stability of Shells and Panels of Nonzero Gaussian Curvature," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 102-108 (1994) [Mech. Solids (Engl. Transl.)].
5.  V. V. Kabanov and S. V. Astrakharchik, "Nonlinear Deformation and Stability of Reinforced Cylindrical Shells in Bending," in Spatial Structures in Krasnoyarsk Region (KISI, Krasnoyarsk, 1985), pp. 75-83 [in Russian].
6.  L. V. Kantorovich and T. R. Akilov, Functional Analysis in Normed Spaces (Fizmatgiz, Moscow, 1959; Pergamon Press, Oxford, 1964).
7.  J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computations, Vol. 2: Linear Algebra (Springer, New York, 1971; Mashinostroenie, Moscow, 1976).
8.  B. P. Demidov and I. A. Maron, Foundations of Computational Mathematics (Nauka, Moscow, 1966) [in Russian].
Received 04 March 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100