Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.692-704

Archive of Issues

Total articles in the database: 12882
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8071
In English (Mech. Solids): 4811

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
A.G. Knyazeva and M.A. Mikolaychuk, "Saturation of a Plate with an Environmental Impurity under Mechanical Loading Conditions," Mech. Solids. 46 (5), 692-704 (2011)
Year 2011 Volume 46 Number 5 Pages 692-704
DOI 10.3103/S0025654411050050
Title Saturation of a Plate with an Environmental Impurity under Mechanical Loading Conditions
Author(s) A.G. Knyazeva (Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, Akademicheskii pr-t 2/4, Tomsk, 634021 Russia, anna@ispms.tsc.ru)
M.A. Mikolaychuk (Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, Akademicheskii pr-t 2/4, Tomsk, 634021 Russia, mishas@ispms.tsc.ru)
Abstract We analyze a model of saturation of a thin plate with an alloying element under uniform loading with a distributed constant load. The appearance of internal stresses accompanying the diffusion processes is taken into account as well as the effect of the stresses on the mass transfer. The exact solution of the mechanical equilibrium problem has allowed us to reduce the model to a nonlinear diffusion problem with a convective term responsible for mass transfer under the action of stresses. We have found that the external loading significantly affects the process if the magnitude of the distributed load is greater than that of the internal stresses, which, in turn, depends on the material properties and the diffusant type. The time-dependence curves of the average strains in the direction of the acting load are typical of the phenomena of diffusion creep.
Keywords plane stress state, diffusion, coupled problem
References
1.  G. D. C. Kuiken, Thermodynamics of Irreversible Processes. Applications to Diffusion and Rheology (Wiley, New York, 1994).
2.  Ya. E. Geguzin, Diffusion Zone (Nauka, Moscow, 1979) [in Russian].
3.  N. I. Bezukhov, Foundations of the Theory of Elasticity, Plasticity, and Creep (Vyssh. Shkola, Moscow, 1961) [in Russian].
4.  B. A. Boley and J. H. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960; Mir, Moscow, 1964).
5.  V. S. Eremeev, Diffusion and Stresses (Energoatomizdat, Moscow, 1984) [in Russian].
6.  T. D. Shermergor, Theory of Elasticity of Micro-Inhomogeneous Media (Nauka, Moscow, 1977) [in Russian].
7.  A. G. Knyazeva, "Diffusion and Rheology in Locally Equilibrium Thermodynamics," Mat. Modelirovanie Sist. Prots., No. 13, 45-60 (2005).
8.  A. G. Knyazeva, "Cross Effects in Solid Media with Diffusion," Zh. Prikl. Mekh. Tekhn. Fiz. 44 (3), 85-99 (2003) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 44 (3), 373-384 (2003)].
9.  A. G. Knyazeva, Introduction to Locally Equilibrium Thermodynamics of Physical and Chemical Transformations in Deformable Media (Izd-vo TGU, Tomsk, 1996) [in Russian].
10.  A. G. Knyazeva and Ya. G. Donskaya, "A Diffusion-Deformation Model for the Growth of a Spherical Nucleus of a Solid-State Reaction Product," Fiz. Goreniya Vzryva 33 (2), 52-68 (1997) [Comb. Expl. Shock Waves (Engl. Transl.) 33 (2), 168-182 (1997)].
Received 22 August 2008
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100