Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.721-738

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
M.D. Kovalenko and T.D. Shulyakovskaya, "Expansions in Fadle-Papkovich Functions in a Strip. Theory Foundations," Mech. Solids. 46 (5), 721-738 (2011)
Year 2011 Volume 46 Number 5 Pages 721-738
DOI 10.3103/S0025654411050074
Title Expansions in Fadle-Papkovich Functions in a Strip. Theory Foundations
Author(s) M.D. Kovalenko (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya 10, Moscow, 123995 Russia, kov08@inbox.ru)
T.D. Shulyakovskaya (Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, B. Gruzinskaya 10, Moscow, 123995 Russia, t.shuliakovskaya@gcras.ru)
Abstract We consider a boundary-value problem of elasticity for a half-strip with free longitudinal sides and some conditions at the end. We present a general scheme for solving the problem in the form of explicit expansions in Fadle-Papkovich functions and study the basis properties of systems of Fadle-Papkovich functions. The theory is based on the Borel transform in the class of quasi-entire functions of exponential type.
Keywords Fadle-Papkovich functions, basis properties, boundary-value problem
References
1.  V. V. Meleshko, "Selected Topics in the History of Two-Dimensional Biharmonic Problem," Appl. Mech. Rev. 56 (1), 33-85 (2003).
2.  B. Ya. Levin, The Distribution of Roots of Entire Functions (Gostekhizdat, Moscow, 1956) [in Russian].
3.  N. I. Akhiezer, Lectures on the Theory of Approximation (Nauka, Moscow, 1965) [in Russian].
4.  A. Pflüger, "Über eine Interpretation gewisser Konvergenz- und Fortsetzungseigenschaften Dirichlet'scher Reichen," Comment. Math. Helvet. 36 (8), 89-129 (1935).
5.  M. D. Kovalenko, "About the Borel Transform in the Class W of Quasi-Integral Functions," Fundam. Prikl. Mat. 7 (3), 761-774 (2001).
6.  A. F. Leontiev, Series of Exponentials (Nauka, Moscow, 1976) [in Russian].
7.  J. F. Korobeinik, "Interpolation Problems, Nontrivial Expansions of Zero, and Representing Systems," Izv. Akad. Nauk SSSR. Ser. Mat. 44 (5), 1066-1114 (1980) [Math. USSR Izv. (Engl. Transl.) 17 (2), 299-337 (1981)].
8.  Yu. F. Korobeinik, "Representing Systems," Uspekhi Mat. Nauk 36 (1), 73-126 (1981) [Russ. Math. Surv. (Engl. Transl.) 36 (1), 75-138 (1981)].
9.  P. F. Papkovich, "On a Form of the Solution to the Plane Problem of Elasticity for a Rectangular Strip," Dokl. Akad. Nauk SSSR 27 (4), 335-339 (1940).
10.  P. A. Schiff, "Sur l'équilibre d'un cylindre d'élastique," J. Math. Pures et Appl. Ser. 3 9, 407-421 (1883)
Received 19 May 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100