Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-5pp.657-668

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
V.S. Aslanov, "Orbital Oscillations of an Elastic Vertically-Tethered Satellite," Mech. Solids. 46 (5), 657-668 (2011)
Year 2011 Volume 46 Number 5 Pages 657-668
DOI 10.3103/S0025654411050013
Title Orbital Oscillations of an Elastic Vertically-Tethered Satellite
Author(s) V.S. Aslanov (Korolyov Samara State Aerospace University, Moskovskoe sh. 34, Samara, 443086 Russia, aslanov_vs@mail.ru)
Abstract The motion of a satellite in a circular orbit with respect to its center of mass is considered. The satellite bears an elastic tether system unrolled along the local vertical. The load at the end of the tether oscillates harmonically. The satellite motion under the action of the gravitational moment and the moment due to the tether tension force is studied. The bifurcation diagram is constructed and the hetero- and homoclinic separatrix trajectories are determined. Mel'nikov's method is used to study the satellite chaotic behavior near separatrices under the action of the periodic tether tension force. The results of the present paper can be used to analyze tether systems of gravitational stabilization and to study the orbital behavior of a satellite with an unrolled tether system with respect to the satellite center of mass.
Keywords space tether system, satellite, dynamics, bifurcation diagram, Mel'nikov's method, chaos
References
1.  V. V. Beletskii and E. M. Levin, Dynamics of Space Tether Systems (Nauka, Moscow, 1990) [in Russian].
2.  I. M. Sidorov, "On the Use of Tether Systems to Construct a Constantly Operating Transport Channel in Space," Polet, No. 8, 36-39 (2000).
3.  F. Zimmermann, U. Schöttle, and E. Messerschmid, "Optimization of the Tether-Assisted Return Mission of a Guide Re-Entry Capsule," Aerospace Sci. Technol. 9 (8), 713-721 (2005).
4.  P. Williams, A. Hyslop, M. Stelzer, and M. Kruijff, "YES2 Optimal Trajectories in Presence of Eccentricity and Aerodynamics Drag," Acta Astronaut. 64 (7-8), 745-769 (2009).
5.  V. S. Aslanov, "The Oscillations of a Body with an Orbital Tethered System," Prikl. Mat. Mekh. 71 (6), 1027-1033 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (6), 926-932 (2007)].
6.  V. V. Beletskii, Artificial Satellite Motion about Its Center of Mass (Nauka, Moscow, 1965) [in Russian].
7.  P. Williams, C. Blanksby, and P. Trivailo, "Tethered Planetary Capture: Controlled Maneuvers," Acta Astronaut. 53 (4), 681-708 (2003).
8.  A. K. Misra, "Dynamics and Control of Tethered Satellite Systems," Acta Astronaut. 63 (11-12), 1169-1177 (2008).
9.  V. K. Mel'nikov, "On the Stability of the Center for Time Periodic Perturbations," Trudy Moskov. Mat. Obshch. No. 12, 3-52 (1963) [Trans. Moscow Math. Soc. (Engl. Transl.) No. 12, 1-57 (1963)].
10.  V. S. Aslanov, "Chaotic Behavior of the Biharmonic Dynamics System," Int. J. Math. Math. Sci. (IJMMS), 2009, Article ID 319179 (2009).
11.  J. Guckenheimer and Ph. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1997; In-t Komput. Issled., Moscow-Izhevsk, 2002).
Received 02 July 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 5 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100