Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2011-4pp.589-596

Archive of Issues

Total articles in the database: 10864
In Russian (. . ): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
M.A. Il'gamov and A.G. Khakimov, "Reflection of a Decaying Traveling Wave from a Notch in a Bar," Mech. Solids. 46 (4), 589-596 (2011)
Year 2011 Volume 46 Number 4 Pages 589-596
DOI 10.3103/S0025654411040091
Title Reflection of a Decaying Traveling Wave from a Notch in a Bar
Author(s) M.A. Il'gamov (Institute of Mechanics, Ufa Scientific Center, Russian Academy of Sciences, pr-t Oktyabrya 71, Ufa, Bashkortostan, 450054 Russia)
A.G. Khakimov (Institute of Mechanics, Ufa Scientific Center, Russian Academy of Sciences, pr-t Oktyabrya 71, Ufa, Bashkortostan, 450054 Russia,
Abstract We study the reflection from a transverse notch and the propagation of a longitudinal decaying traveling wave in a bar by using the simplest model of the stress-strain state in the notch region and obtain the solution dependence on the notch parameters. The solution of the inverse problem permits determining the notch coordinate and the parameter determining its depth and length from the data describing the incident and reflected waves at the observation site.
Keywords bar, longitudinal wave, decay, direct and inverse problems
1.  B. V. Sidorov and S. A. Martynov, "Recommended Technology of Diagnostics of Buried Pipelines," Kontrol'. Diagnostika, No. 12, 18-19 (2005),
2.  Yu. V. Van'kov, R. B. Kazakov, and E. R. Yakovleva, "Natural Frequencies as Diagnostic Criteria for Flaw Detection," Electronic J. "Technical Acoustics,", 2003, 5.
3.  M. A. Il'gamov, "Diagnostics of Damage of a Vertical Rod," Trudy Inst. Mekh. UNTs RAN, No. 5, 201-211 (2007).
4.  G. Biscontin, A. Morassi, and P. Wendel, "Asymptotic Separation of Spectrum in Notched Rods," J. Vib. Contr. 4 (3), 237-251 (1998).
5.  G. M. L. Gladwell, Inverse Problems in Vibration (Kluwer, Dordrecht, 2004; NITs "Regular. Khaotich. Din.," Moscow-Izhevsk, 2008).
6.  T. Pritz, "Apparent Complex Young's Modulus of a Longitudinally Vibrating Viscoelastic Rod," J. Sound Vibr. 77 (1), 93-100 (1981).
7.  D. Benatar, D. Rittel, and A. L. Yarin, "Theoretical and Experimental Analysis of Longitudinal Wave Propagation in Cylindrical Viscoelastic Rods," J. Mech. Phys. Solids 51 (8), 1413-1431 (2003).
8.  S. L. Lopatnikov, B. A. Gama, K. Krauthouser, and G. Gillespie, "Applicability of the Classical Analysis of Experiments with Split Hopkins Pressure Bar," Pis'ma Zh. Techn. Fiz. 30 (3), 39-46 (2004) [Tech. Phys. Lett. (Engl. Transl.) 30 (2), 102-105 (2004)].
9.  H. Kolsky, "An Investigation of Mechanical Properties of Materials at Very High Rates of Loading," Proc. Phys. Soc. London. Ser. B 62 (359), 676-700 (1949).
10.  V. V. Meleshko, A. A. Bondarenko, S. A. Dovgii, et al., "Elastic Waveguides: History and the Present," Mat. Metody Fiz.-Mekh. Polya 51 (2), 86-104 (2008).
11.  A. O. Vatul'yan, Inverse Problems in Mechanics of a Deformable Solid (Fizmatlit, Moscow, 2007) [in Russian].
12.  A. O. Vatul'yan and N. O. Soluyanov, "Determining the Location and Dimensions of a Cavity in an Elastic Rod ," Defectoskop. 41 (9), 44-56 (2005) [Russ. J. Nondestruct. Test. (Engl. Transl.) 41 (9), 586-593 (2005)].
Received 27 April 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100