Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-4pp.508-518

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
O.V. Kholostova, "On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point," Mech. Solids. 46 (4), 508-518 (2011)
Year 2011 Volume 46 Number 4 Pages 508-518
DOI 10.3103/S0025654411040029
Title On Stability of Relative Equilibria of a Double Pendulum with Vibrating Suspension Point
Author(s) O.V. Kholostova (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, kholostova_o@mail.ru)
Abstract We consider the motions of a double pendulum consisting of two hinged identical rods. The pendulum suspension point is assumed to perform harmonic vibrations of arbitrary frequency and arbitrary amplitude in the vertical direction. We carry out a complete nonlinear analysis of the stability of the four pendulum relative equilibria on the vertical.

The problem on the stability of the relative equilibria of the mathematical pendulum in the case where the suspension point performs vertical harmonic vibrations of arbitrary frequency and arbitrary amplitude was considered in a linear setting [1-3] and a nonlinear setting [4, 5]. In the case of small-amplitude rapid vertical vibrations of the suspension point, linear and (mathematically not fully rigorous) nonlinear stability analysis of the relative equilibria was carried out for an ordinary pendulum [6-9] and a double pendulum [10, 11]. In [12], for the same case of rapid vibrations, stability conditions in the linear approximation were obtained for the four relative equilibria of a system consisting of two physical pendulums. In the special case of a system consisting of two identical rods, the problem was solved in the nonlinear setting.
Keywords double pendulum, relative equilibrium, Mathieu equation, stability resonance
References
1.  M. J. O. Strutt, Lame'sche-Mathieusche-und verwandte Funktionen in Physik und Technik (Springer, Berlin, 1932; Gostekhizdat, Kharkov-Kiev, 1935).
2.  N. W. Mac-Lachlan, Theory and Applications of Mathieu Functions (Clarendon Press, Oxford, 1947; Izd-vo Inostr. Lit., Moscow, 1953).
3.  J. J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems (Wiley, New York-London, 1950; Izd-vo Inostr. Lit., Moscow, 1953).
4.  A. P. Markeyev, "The Behaviour of a Non-Linear Hamiltonian System with one Degree of Freedom at the Boundary of a Parametric Resonance Domain," Prikl. Mat. Mekh. 59 (4), 569-580 (1995) [J. Appl. Math. Mech. (Engl. Transl.) 59 (4), 541-551 (1995)].
5.  B. S. Bardin and A. P. Markeyev, "The Stability of the Equilibrium of a Pendulum for Vertical Oscillations of the Point of Suspension," Prikl. Mat. Mekh. 59 (6), 922-929 (1995) [J. Appl. Math. Mech. (Engl. Transl.) 59 (6), 879-886 (1995)].
6.  A. Stephenson, "On a New Type of Dynamical Stability," Mem. Proc. Manch. Lit. Phil. Soc. 52 (2, 8), 1-10 (1908).
7.  A. Erdélyi, "Über die Kleinen Schwingungen eines Pendels mit Oszillierendem Aufhängepunkt," ZAMM 14 (4), 235-247 (1934).
8.  P. L. Kapitsa, "Pendulum with Vibrating Suspension," Uspekhi Fiz. Nauk 44 (1), 7-20 (1951).
9.  P. L. Kapitsa, "Dynamical Stability of a Pendulum with Vibrating Suspension Point," Zh. Éksp. Teor. Fiz. 21 (5), 588-597 (1951) [Soviet Phys. JETP (Engl. Transl.)].
10.  A. Stephenson, "On Induced Stability," Phil. Mag. Ser. 7 17, 765-766 (1909).
11.  T. G. Strizhak, Methods for Studying 'Pendulum'-Type Dynamical Systems (Nauka, Alma-Ata, 1981) [in Russian].
12.  O. V. Kholostova, "On the Motions of a Double Pendulum with Vibrating Suspension Point," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 2, 25-40 (2009) [Mech. Solids (Engl. Transl.) 44 (2), 184-197 (2009)].
13.  A. P. Markeyev, "A Constructive Algorithm for the Normalization of a Periodic Hamiltonian," Prikl. Mat. Mekh. 69 (3), 355-371 (2005) [J. Appl. Math. Mech. (Engl. Transl.) 69 (3), 323-337 (2005)].
14.  V. A. Yakubovich and V. M. Starzhinskii, Parametric Resonance in Linear Systems (Nauka, Moscow, 1987) [in Russian].
15.  A. P. Markeev, Libration Points in Celestial Mechanics and Space Dynamics (Nauka, Moscow, 1978) [in Russian].
16.  A. M. Lyapunov, "On Stability of Motion in a Special Case of the Three-Body Problem," in Collection of Works, Vol. 1 (Izd-vo AN SSSR, Moscow-Leningrad, 1954), pp. 327-401 [in Russian].
17.  V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer-Verlag, New York, 1988; Editorial URSS, Moscow, 2002).
18.  J. Moser, "New Aspects of the Theory of Stability of Namiltonian Systems," Comm. Pure Appl. Math. 11 (1), 81-114 (1958).
19.  J. Glimm, "Formal Stability of Namiltonian Systems," Comm. Pure Appl. Math. 17 (4), 509-526 (1964).
20.  A. P. Markeev, "Stability of Planar Rotations of a Satellite in a Circular Orbit," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 63-85 (2006) [Mech. Solids. (Engl. Transl.) 41 (4), 46-63 (2006)].
Received 23 April 2009
Link to Fulltext
<< Previous article | Volume 46, Issue 4 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100