Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-2pp.266-274

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 2 / 2011 | Next article >>
V.A. Vestyak, A.S. Sadkov, and D.V. Tarlakovskii, "Propagation of Unsteady Bulk Perturbations in an Elastic Half-Plane," Mech. Solids. 46 (2), 266-274 (2011)
Year 2011 Volume 46 Number 2 Pages 266-274
DOI 10.3103/S0025654411020154
Title Propagation of Unsteady Bulk Perturbations in an Elastic Half-Plane
Author(s) V.A. Vestyak (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia)
A.S. Sadkov (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia)
D.V. Tarlakovskii (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, tdvhome@mail.ru, tdv902@mai.ru)
Abstract At present, the problems of unsteady waves initiated by surface perturbations in an elastic half-space have been studied sufficiently well (see, e.g., [1-5]; a detailed bibliography on this problem can be found in [6]). At the same time, the analytical solutions of the corresponding unsteady problems of bulk perturbations are practically absent. It is these questions as applied to the plane problem that are considered in this paper.
Keywords elastic half-plane, initial-boundary-value problems, Green's functions, integral Fourier-Laplace transform, analytical representation
References
1.  A. G. Gorshkov and D. V. Tarlakovskii, Dynamic Contact Problems with Moving Boundaries (Nauka, Fizmatlit, Moscow, 1995) [in Russian].
2.  V. B. Poruchikov, Methods of Dynamical Elasticity (Nauka, Moscow, 1986) [in Russian].
3.  L. I. Slepyan and Yu. S. Yakovlev, Integral Transformations in Unsteady Problems in Mechanics (Sudostroenie, Leningrad, 1980) [in Russian].
4.  D. I. Sherman, "Vibration of an Elastic Half-Space under Given Displacements or External Forces on the Boundary," in Proc. Seismological Institute of USSR Academy of Sciences, No. 118 (1946) [in Russian].
5.  H. Lamb, "On the Propagation of Tremors over the Surface on an Elastic Solid," Phil. Trans. Roy. Soc. London. Ser. A 203 (359), 1-44 (1904).
6.  A. G. Gorshkov and D. V. Tarlakovskii, "Unsteady Dynamic Contact Problems," in Mechanics of Contact Interactions (Fizmatlit, Moscow, 2001), pp. 349-416 [in Russian].
7.  A. G. Gorshkov, A. L. Medvedskii, L. N. Rabinskii, and D. V. Tarlakovskii, Waves in Continuous Media (Fizmatlit, Moscow, 2004) [in Russian].
8.  E. L. Kuznetsova and D. V. Tarlakovskii, "Explicit Form of the Solution of the Lamb Problem at an Arbitrary Point of the Half-Plane," in Proc. of the 12th International Symposium "Dynamical and Technological Problems of Structure and Continuum Mechanics." Selected Papers (Izd-vo MAI, Moscow, 2006), pp. 104-120 [in Russian].
9.  V. A. Vestyak, V. A. Lemeshev, and D. V. Tarlakovskii, "Plane Unsteady Waves in an Electromagnetoelastic Half-Space and a Layer," Several Problems in Mechanics and Mathematics, Lviv 1, 65-67 (2008) [in Russian].
10.  V. A. Vestyak, V. A. Lemeshev, and D. V. Tarlakovskii, "One-Dimensional Time-Dependent Waves in an Electromagnetoelastic Half-Space or in a Layer," Dokl. Ross. Akad. Nauk 426 (6), 747-749 (2009) [Dokl. Phys. (Engl. Transl.) 54 (6), 262-264 (2009)].
Received 06 December 2010
Link to Fulltext
<< Previous article | Volume 46, Issue 2 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100