Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2011-2pp.239-247

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 46, Issue 2 / 2011 | Next article >>
E.Yu. Mikhailova and G.V. Fedotenkov, "Nonstationary Axisymmetric Problem of the Impact of a Spherical Shell on an Elastic Half-Space (Initial Stage of Interaction)," Mech. Solids. 46 (2), 239-247 (2011)
Year 2011 Volume 46 Number 2 Pages 239-247
DOI 10.3103/S0025654411020129
Title Nonstationary Axisymmetric Problem of the Impact of a Spherical Shell on an Elastic Half-Space (Initial Stage of Interaction)
Author(s) E.Yu. Mikhailova (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia, tdv@mai.ru)
G.V. Fedotenkov (Moscow Aviation Institute (State University of Aerospace Technologies), Volokolamskoe sh. 4, GSP-3, A-80, Moscow, 125993 Russia)
Abstract The supersonic stage of interaction (where the rate of expansion of the contact region is no less than the speed of compression waves) between a Timoshenko-type spherical shell (indenter) and an elastic half-space (foundation) is studied. The expansion of the desired functions in series in Legendre polynomials and their derivatives are used to construct a system of resolving equations. An analytical-numerical algorithm for solving this system is developed. A similar problem was considered in [1], where the original problem was replaced by a problem with a periodic system of indenters.
Keywords nonstationary contact problem, influence function, Timoshenko-type spherical shell, elastic half-space
References
1.  V. D. Kubenko and V. R. Bogdanov, "Axisymmetric Impact of a Shell on an Elastic Halfspace," Prikl. Mekh. 31 (10), 56-63 (1995) [Int. Appl. Mech. (Engl. Transl.) 31 (10), 829-835 (1995)].
2.  A. G. Gorshkov, A. L. Medvedskii, L. N. Rabinskii, and D. V. Tarlakovskii, Waves in Continuous Media (Fizmatlit, Moscow, 2004) [in Russian].
3.  A. G. Gorshkov and D. V. Tarlakovskii, Dynamic Contact Problems with Moving Boundaries (Nauka, Fizmatlit, Moscow, 1995) [in Russian].
4.  M. Abramowitz and I. A. Stegun (Editors) Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, Ed. by M. Abramowitz and I. Stegun (Dover, New York, 1972; Nauka, Moscow, 1979).
5.  N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975; Central Books, 1978).
6.  I. M. Gelfand and G. E. Shilov, Generalized Functions and Operations over Them (Fizmatgiz, Moscow, 1959) [in Russian].
Received 06 December 2010
Link to Fulltext
<< Previous article | Volume 46, Issue 2 / 2011 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100