Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us

IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2010-6pp.815-834

Archive of Issues

Total articles in the database: 10864
In Russian (»Á‚. –ņÕ. Ő““): 8009
In English (Mech. Solids): 2855

<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
I.E. Berinskii and A.M. Krivtsov, "On Using Many-Particle Interatomic Potentials to Compute Elastic Properties of Graphene and Diamond," Mech. Solids. 45 (6), 815-834 (2010)
Year 2010 Volume 45 Number 6 Pages 815-834
DOI 10.3103/S0025654410060063
Title On Using Many-Particle Interatomic Potentials to Compute Elastic Properties of Graphene and Diamond
Author(s) I.E. Berinskii (Saint-Petersburg State Polytechnical University, Polytekhnicheskaya 29, St.†Petersburg, 195251 Russia,
A.M. Krivtsov (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, V.O., St.†Petersburg, 199178 Russia,
Abstract The elastic properties of diatomic crystals are considered. An approach is proposed that permits calculating the elastic characteristics of crystals by using the interatomic interaction parameters specified as many-particle potentials, i.e., potentials that take into account the effect of the environment on the diatomic interaction. The many-particle interaction is given in the general form obtained in the framework of linear elastic deformation. It is shown that, by expanding in series in small deformation parameters, a group of nonlinear potentials frequently used to model covalent structures can be reduced to this general form. An example of graphene and diamond lattices is used to determine how adequately these potentials describe the elastic characteristics of crystals.
Keywords graphene, diamond, nanoanalysis, elastic properties, mechanics of crystal lattices, interaction potential
1.  K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., "Electric Field Effect in Atomically Thin Carbon Films, Science 306 (5696), 666-669 (2004).
2.  K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., "Two-Dimensional Gas of Massless Dirac Fermions in Graphene," Nature 438, 197-200 (2005).
3.  M. Segal, "Wait for a Breakthrough in a Year," Publication in Internet. URL: 2009/10/27/12566498911870\_157791.html (Date 27.08.2010).
4.  E. A. Belenkov, V. V. Ivanovskaya, and A. L. Ivanovskii, Nanodiamonds and Relative Carbon Materials. Computer Simulation (Ekaterinburg, UrO RAN, 2008) [in Russian].
5.  J. C. Bowman and J. A. Krumhansl, "The Low-Temperature Specific Heat of Graphite," J. Phys. Chem. Solids 6 (4), 367-379 (1958).
6.  O. L. Blakslee, D. G. Proctor, E. J. Seldin, et al., "Elastic Constants of Compression-Annealed Pyrolytic Graphite," J. Appl. Phys. 41 (8), 3373-3382 (1970).
7.  E. J. Seldin and C. W. Nezbeda, "Elastic Constants and Electron-Microscope Observations of Neutron-Irradiated Compression-Annealed Pyrolytic and Single-Crystal Graphite," J. Appl. Phys. 41 (8), 3389-3400 (1970).
8.  R. Nicklow, N. Eakabayashi, and H. G. Smith, "Lattice Dynamics of Pyrolytic Graphite," Phys. Rev. B 5, 4951-4962 (1972).
9.  W. B. Gauster and I. J. Fritz, "Pressure and Temperature Dependencies of the Elastic Constants of Compression-Annealed Pyrolytic Graphite," J. Appl. Phys. 45 (8), 3309-3314 (1974).
10.  M. Grimsditch, "Shear Elastic Modulus of Graphite," J. Phys. C: Solid State Phys. 16, L143-L144 (1983).
11.  A. Bosak, M. Krisch, M. Mohr, et al., "Elasticity of Single-Crystalline Graphite: Inelastic X-Ray Scattering Study," Phys. Rev. B 75, 153408(4) (2007).
12.  I. W. Frank, D. N. Tannenbaim, A. M. Van der Zande, and P. L. McEuen, "Mechanical Properties of Suspended Graphene Sheets," J. Vac. Sci. Tech. 25 (6), 2558-2561 (2007).
13.  M. Poot and S. J. Van der Zant, "Nanomechanical Properties of Few-Layer Graphene Membranes," Appl. Phys. Lett. 92, 063111 (2008).
14.  C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science 321, 385-388 (2009).
15.  S. Bhagavantuam and J. Bhirnuassenachar, "Elastic Constants of Diamond," Proc. Roy. Soc. London. Ser. A 187 (1010), 381-384 (1946).
16.  R. F. S. Hearmon, "The Elastic Constants of Anisotropic Materials," Rev. Modern Phys. 18 (3), 409-440 (1946).
17.  E. Prince and W. A. Wooster, "Determination of Elastic Constants of Crystals from Diffuse Reflection of X-Rays. III. Diamond," Acta Crystallogr. 6 (6), 450-454 (1953).
18.  H. J. McSkimin and W. L. Bond, "Elastic Moduli of Diamond," Phys. Rev. 105, 116-987 (1957).
19.  H. J. McSkimin and P. Andreatch, "Elastic Moduli of Diamond as a Function of Pressure and Temperature," J. Appl. Phys. 43 (7), 2944-2948 (1972).
20.  H. F. Markham, National Physical Laboratory Measurements (UK), presented by M. J. P. Musgrave, Diamond Conference, Reading (unpublished, 1965).
21.  M. H. Grimsditch and A. K. Ramdas, "Brillouin Scattering in Diamond," Phys. Rev. B 11 (10), 3139-3148 (1975).
22.  V. A. Shutilov, Foundations of Ultrasound Physics (Izd-vo LGU, Leningrad, 1980) [in Russian].
23.  J. J. Gilman, "Origins of the Outstanding Mechanical Properties of Diamond," Mater. Res. Innovat. 6 (3), 112-117 (2002).
24.  S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature 354 (6348), 56-58 (1991).
25.  D. D. Vvedensky, "Multiscale Modeling of Nanostructures," J. Phys.: Condens. Matter 16 (50), R1537-R1576 (2004).
26.  R. R. Ruoff, D. Qian, and W. K. Liu, "Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements," C. R. Physique 4 (10), 993-1008 (2003).
27.  P. K. Valalvala and G. M. Odegard, "Modelling Techniques for Determination of Mechanical Properties of Polymer Nanocomposites," Rev. Adv. Mater. Sci. 9, 34-44 (2005).
28.  A. M. Krivtsov, Elastic Properties of One-Atomic and Two-Atomic Crystals (Izd-vo Politekh. Univ., St. Petersburg, 2009) [in Russian].
29.  B. D. Annin, S. N. Korobeinikov, and A. V. Babichev, "Computer Simulation of a Twisted Nanotube Buckling," Sib. Zh. Industr. Mat. 11 (1), 3-22 (2008) [J. Appl. Industr. Math. (Engl. Transl.) 3 (3), 318-333 (2009)].
30.  R. V. Goldstein and A. V. Chentsov, "Discrete-Continuous Model of a Nanotube," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57-74 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 45-59 (2005)].
31.  J. Tersoff, "New Empirical Approach for the Structure and Energy of Covalent Systems," Phys. Rev. B 37 (12), 6991-7000 (1988).
32.  J. Tersoff, "Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon," Phys. Rev. B 61 (25), 2879-2882 (1988).
33.  D. W. Brenner, "Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films," Phys. Rev. B 42 (15), 9458-9471 (1990).
34.  D. W. Brenner, O. A. Shenderova, J. A. Harrison, et al., "Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons," J. Phys.: Condens. Matter 14, 783-802 (2002).
35.  N. L. Allinger, Y. H. Yuh, and J.-H. Lii, "Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 3. The van der Waal's Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons," J. Am. Chem. Soc. 111 (23), 8576-8582 (1989).
36.  D. A. Case, T. E. Cheatham, T. Darden, et al., "The Amber Biomolecular Simulation Programs," J. Comput. Chem. 26 (16), 1668-1688 (2005).
37.  J. W. Ponder and D. A. Case, "Force Fields for Protein Simulations," Adv. Prot. Chem. 66, 27-85 (2003).
38.  F. Scarpa, S. Adhikari, and A. Srikantha Phani, "Effective Elastic Mechanical Properties of Single Layer Graphene Sheets," Nanotechnol. 20, 065709 (2009).
39.  A. Sears and R. C. Batra, "Macroscopic Properties of Carbon Nanotubes from Molecular-Mechanics Simulations," Phys. Rev. B 69 (23), 235406 (2004).
40.  A. V. Vakhrushev, A. M. Lipanov, and M. V. Suetin, "Modeling of Processes of Hydrogen Adsorption by Nanostructures," Alternat. Energet. Ekol. 1 (45), 22-29 (2007).
41.  A. M. Krivtsov, Deformation and Failure of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
42.  P. Zhang, Y. Huang, H. Gao, and K. C. Hwang, "Fracture Nucleation in Single-Wall Carbon Nanotubes under Tension: A Continuum Analysis Incorporating Interatomic Potentials," Trans. ASME J. Appl. Mech. 69 (4), 454-458 (2002).
43.  P. Zhang, Y. Huang, P. H. Geubelle, et al., "The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials," Int. J. Solids Struct. 39 (13), 3839-3906 (2002).
44.  G. M. Odegrad, T. S. Gates, L. M. Nicholson, and K. E. Wise, "Equivalent-Continuum Modeling of Nano-Structured Materials," Compos. Sci. Techn. 62 (14), 1869-1880 (2002).
45.  R. V. Goldstein, N. M. Osipenko, and A. V. Chentsov, "To Determination of the Strength of Nanodimensional Objects," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 164-181 (2008) [Mech. Solids (Engl. Transl.) 43 (3), 453-469 (2008)].
46.  C. Li and T. W. Chou, "A Structural Mechanics Approach for the Analysis of Carbon Nanotubes," Int. J. Solids Struct. 40 (10), 2487-2499 (2003).
47.  K. I. Tserpes and P. Papanikos, "Finite Element Modeling of Single-Walled Carbon Nanotubes," Composites B 36, 468-477 (2005).
48.  E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, "Inclusion of the Moment Interaction in the Calculation of the Flexural Rigidity of Nanostructures," Dokl. Ross. Akad. Nauk 391 (6), 764-768 (2003) [Dokl. Phys. (Engl. Transl.) 48 (8), 455-458 (2003)].
49.  E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsova, "Description of Crystal Packing of Particles with Torque Interaction," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 110-127 (2003) [Mech. Solids (Engl. Transl.) 38 (4), 76-88 (2003)].
50.  E. A. Ivanova, A. M. Krivtsov, and H. F. Morozov, "Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices taking into Account the Moment Interactions at the microlevel," Prikl. Mat. Mekh. 71 (4), 595-615 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (4), 543-561 (2007)].
51.  I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al. Theoretical Mechanics. Elastic and Thermal Properties of Ideal Crystals. Tutorial, Ed. by A. M. Krivtsov (Izd-vo Politekhn. Univ., St. Petersburg, 2009) [in Russian].
52.  A. M. Krivtsov and N. F. Morozov, "Anomalies in Mechanical Characteristics of Nanometer-Size Objects," Dokl. Ross. Akad. Nauk 381 (3), 345-347 (2001) [Dokl. Phys. (Engl. Transl.) 46 (11), 825-827 (2001)].
53.  A. M. Krivtsov and N. F. Morozov, "On Mechanical Characteristics of Nanocrystals," Fiz. Tverd. Tela 44 (12), 2158-2163 (2002) [Phys. Solid State (Engl. Transl.) 44 (12), 2260-2265 (2002)].
54.  B. I. Yakobson, C. J. Brabeck, and J. Bernholc, "Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response," Phys. Rev. Lett. 76 (14), 2511-2514 (1996).
55.  R. V. Goldstein, V. A. Gorodtsov, and D. S. Lisovenko, "Mesomechanics of Multilayer Carbon Nanotubes and Nanowhiskers," Fizich. Mezomekh. 11 (6), 25-42 (2008).
56.  I. E. Berinskii, A. M. Krivtsov, and A. M. Kudarova, "Two-Parameter Multiparticle Model for Describing the Elastic Characteristics of Graphene," in Progress in Continuum Mechanics, Collection of Scientific Papers Dedicated to the 70th Anniversary of Academician V. A. Levin (Dal'nauka, Vladivostok, 2009), pp. 67-82 [in Russian].
57.  M. Arroyo and T. Belytschko, "Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule," Phys. Rev. B 69, 115415 (2004).
58.  A. Erdemir and J.-M. Martin (Editors), Supserlubricity (Elsevier, Amsterdam, 2007).
59.  C. D. Reddy, S. Rajendran, and K. M. Liew, "Equilibrium Configuration and Continuum Elastic Properties of Finite Sized Graphene," Nanotechnology 17, 864-870 (2006).
Received 30 March 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 6 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
Rambler's Top100