Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-4pp.610-623

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
S.A. Lychev, A.V. Manzhirov, and S.V. Joubert, "Closed Solutions of Boundary-Value Problems of Coupled Thermoelasticity," Mech. Solids. 45 (4), 610-623 (2010)
Year 2010 Volume 45 Number 4 Pages 610-623
DOI 10.3103/S0025654410040102
Title Closed Solutions of Boundary-Value Problems of Coupled Thermoelasticity
Author(s) S.A. Lychev (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, lychev@ipmnet.ru)
A.V. Manzhirov (Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526 Russia, manzh@ipmnet.ru)
S.V. Joubert (Tshwane University of Technology, P.B. X680, Pretoria, 0001 FIN-40014 South African Republic, joubertsv@tut.ac.za)
Abstract Coupled equations of thermoelasticity take into account the effect of nonuniform heating on the medium deformation and that of the dilatation rate on the temperature distribution. As a rule, the coupling coefficients are small and it is assumed, sometimes without proper justification, that the effect of the dilatation rate on the heat conduction process can be neglected. The aim of the present paper is to construct analytical solutions of some model boundary-value problems for a thermoelastic bounded body and to determine the body characteristic dimensions and the medium thermomechanical moduli for which it is necessary to take into account that the temperature and displacement fields are coupled. We consider some models constructed on the basis of the Fourier heat conduction law and the generalized Cattaneo-Jeffreys law in which the heat flux inertia is taken into account. The solution is constructed as an expansion in a biorthogonal system of eigenfunctions of the nonself-adjoint operator pencil generated by the coupled equations of motion and heat conduction. For the model problem, we choose a special class of boundary conditions that allows us to exactly determine the pencil eigenvalues.
Keywords coupled thermoelasticity, generalized Cattaneo-Jeffreys law, nonself-adjoint operators, biorthogonal systems, analytical solutions, micron-scale bodies, coupling effect evaluation
References
1.  A. C. Eringen, Mechanics of Continua (Huntington, New York, 1980).
2.  W. Nowacki, Theory of Elasticity (Mir, Moscow, 1975) [in Russian].
3.  Yu. E. Senitskii, "Solution of Coupled Dynamic Thermoelasticity Problem for an Infinite Cylinder and Sphere," Prikl. Mekh. 18 (6), 34-41 (1982) [Int. Appl. Mech. (Engl. Transl.) 18 (6), 514-520 (1982)].
4.  B. Boley and J. Wiener, Theory of Thermal Stresses (Wiley, New Your, 1960; Mir, Moscow, 1964).
5.  V. V. Lemanov and G. A. Smolenskii, "Hypersonic Waves in Crystals," Uspekhi Fiz. Nauk, 108 (3), 465-501 (1972) [Sov. Phys. Usp. (Engl. Transl) 15 (6), 708-727 (1973)].
6.  X. Wang and X. Xu, "Thermoelastic Wave Induced by Pulsed Laser Heating," Appl. Phys. A 73, 107-114 (2001).
7.  F. Cernuschi, A. Figari, and L. Fabbri, "Thermal Wave Interferometry for Measuring the Thermal Diffusivity of Thin Slabs," J. Mat. Sci. 35 (23), 5891-5897 (2000).
8.  Material Property Data, MatWeb: www.matweb.com.
9.  D. W. Tang and N. Araki, "On Non-Fourier Temperature Wave and Thermal Relaxation Time," Int. J. Thermophys. 18 (2), 493-504 (1997).
10.  A. Sommerfeld, Partial Differential Equations in Physics (Inostr. Lit., Moscow, 1950) [in Russian].
11.  D. D. Joseph and L. Preziosi, "Heat Waves," Mod. Phys. 61 (1), 41-73 (1989).
12.  M. A. Naimark, Linear Differential Operators (Nauka, Moscow, 1950) [in Russian].
13.  S. A. Lychev, "Coupled Dynamic Thermoviscoelasticity Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 95-113 (2008) [Mech. Solids (Engl. Transl.) 43 (5), 769-784 (2008)].
14.  S. A. Lychev and Yu. E. Senitskii, "Nonsymmetric Finite Integral Transformations and Their Applications to Viscoelasticity Problems," Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser., Special Issue, 16-38 (2002).
15.  A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils (Shtiintsa, Kishinev, 1986; Amer. Math. Soc., Providence, R.I., 1988).
16.  L. Collatz, Eigenvalue Problems with Technical Applications (Chelsea, New York, 1948; Nauka, Moscow, 1968).
17.  Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1 (Inostr. Lit., Moscow, 1958) [in Russian].
18.  Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 2 (Inostr. Lit., Moscow, 1960) [in Russian].
Received 15 March 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 4 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100