Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2010-3pp.370-378

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
A.M. Krivtsov and E.A. Podol'skaya, "Modeling of Elastic Properties of Crystals with Hexagonal Close-Packed Lattice," Mech. Solids. 45 (3), 370-378 (2010)
Year 2010 Volume 45 Number 3 Pages 370-378
DOI 10.3103/S0025654410030076
Title Modeling of Elastic Properties of Crystals with Hexagonal Close-Packed Lattice
Author(s) A.M. Krivtsov (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, akrivtsov@bk.ru)
E.A. Podol'skaya (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol'shoy pr-t 61, St. Petersburg, 199178 Russia, katepodolskaya@gmail.com)
Abstract In the present paper, we consider mechanical properties of an ideal hexagonal close-packed (HCP) crystal lattice. We construct three models for describing the elastic characteristics of metals with HCP lattice. Using examples of nine metals with different degree of geometric imperfection (beryllium, hafnium, cadmium, cobalt, magnesium, rhenium, titanium, zinc, and zirconium), we show that including the moment interaction into the model leads to a more accurate description of the elastic properties than taking into account the geometric features of a specific lattice. We also show that, depending on the type of the electron shell, it is efficient to use different models; namely, for d-elements, it suffices to use the two-parameter force model, while for the s-elements, it is required to take the moment interaction into account.
Keywords HCP lattice, elastic properties, moment interaction, electron shell, bulk compression modulus
References
1.  A. M. Krivtsov, Deformation and Failure of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].
2.  R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (A. Hilger, New York, 1988).
3.  M. P. Allen and A. K. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
4.  R. V. Goldstein and A. V. Chentsov, "Discrete-Continuous Model of a Nanotube," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57-74 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 45-59 (2005)].
5.  R. V. Goldstein, V. A. Gorodtsov, and D. S. Lisovenko, "Mesomechanics of Multilayer Carbon Nanotubes and Nanowhiskers," Fizich. Mezomekh. 11 (6), 25-42 (2008).
6.  A. M. Krivtsov and N. F. Morozov, "Anomalies in Mechanical Characteristics of Nanometer-Size Objects," Dokl. Ross. Akad. Nauk 381 (3), 345-347 (2001) [Dokl. Phys. (Engl. Transl.) 46 (11), 825-827 (2001)].
7.  E. A. Gudilin, A. V. Garshev, A. E. Baranchikov, et al., The Riches of the Nanoworld. Photo Reportage from the Depths of Matter, Ed. by Yu. D. Tret'yakov (BINOM, Laboratoriya Znanii, Moscow, 2009) [in Russian].
8.  A. Yu. Kuksin, G. E. Norman, V. V. Stegailov, and A. V. Yanilkin, "Molecular Simulation as a Scientific Base of Nanotechnologies in Power Engineering," J. Engng Thermophys. 18 (3), 197-226 (2009).
9.  B. D. Annin, S. N. Korobeynikov, and A. V. Babichev, "Computer Simulation of a Twisted Nanotube Buckling," Sib. Zh. Industr. Mat. 11 (1), 3-22 (2008) [J. Appl. Industr. Math. (Engl. Transl.) 3 (3), 318-333 (2009)].
10.  Ch. P. Poole, Jr., and F. J. Owens, Nanotechnologies, 4th ed. revised and completed (Wiley, New York, 2003; Tekhnosfera, Moscow, 2009).
11.  A. M. Krivtsov, Elastic Properties of One-Atomic and Two-Atomic Crystals (Izd. Politekh. Univ., St. Petersburg, 2009) [in Russian].
12.  I. E. Berinskii, N. G. Dvas, A. M. Krivtsov, et al. Theoretical Mechanics. Elastic Properties of One-Atomic and Two-Atomic Crystals, Ed. by A. M. Krivtsov, (Izd-vo Politekh. Univ., St. Petersburg, 2009) [in Russian].
13.  Y. Chen, "Local Stress and Heat Flux in Atomistic Systems Involving Three-Body Forces," J. Chem. Phys. 124, 054113 (2006).
14.  J. A. Zimmerman, R. E. Jones, and J. A. Templeton, "A Material Frame Approach for Evaluating Continuum Variables in Atomistic Simulations," J. Comp. Phys. 229 (1), 2364-2389 (2010).
15.  V. M. Fomin, I. F. Golovnev, and A. V. Utkin, "Relation between the Atomic Picture and Continuum Mechanics Description of Detonating Solid-State Explosives," Shock Waves 13 (1), 155-165 (2003).
16.  E. A. Ivanova, A. M. Krivtsov, N. F. Morozov, and A. D. Firsov, "Description of Crystal Packing of Particles with Torque Interaction," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 110-127 (2003) [Mech. Solids (Engl. Transl.) 38 (4), 76-88 (2003)].
17.  N. A. Baranov, E. A. Dubov, I. V. Dyatlova, and E. V. Chernykh, "Atomic-Discrete Description of the Effect of Anisotropic Interatomic Interactions on the Elastic Properties of Metals with a Hexagonal Close-Packed Lattice," Fiz. Tverd. Tela 46 (2), 212-217 (2004) [Phys. Solid State (Engl. Transl.) 46 (2), 213-218 (2004)].
18.  E. I. Golovneva, I. F. Golovnev, and V. M. Fomin, "Modeling of Quasistatic Processes in Crystals by a Method of Molecular Dynamics," Fizich. Mezomekh. 6 (6), 5-10 (2003).
19.  D. M. Vasil'ev, Physical Crystallography (Metallurgiya, Moscow, 1981) [in Russian].
20.  V. M. Silonov, E. V. Evlyukhina, O. V. Kris'ko, and A. B. Evlyukhin, "Influence of Interatomic Correlation Effects on Short-Range Order in Hexagonal Close-Packed Polycrystalline Alloys," Fiz. Tverd. Tela 41 (12), 2009-2015 (1999) [Phys. Solid State (Engl. Transl.) 41 (12), 1933-1939 (1999)].
21.  P. A. Zhilin, Vectors and Tensors of Rank Two in Three-Dimensional Space (Nestor, St. Petersburg, 2001) [in Russian].
22.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
23.  E. A. Ivanova, A. M. Krivtsov, and N. F. Morozov, "Derivation of Macroscopic Relations of the Elasticity of Complex Crystal Lattices Taking into Account the Moment Interactions at the Microlevel," Prikl. Mat. Mekh. 71 (4), 595-615 (2007) [J. Appl. Math. Mech. (Engl. Transl.) 71 (4), 543-561 (2007)].
24.  I. S. Grigoriev and E. Z. Meilikhov (Editors), Physical Quantities, Reference Book (Energoatomizdat, Moscow, 1991) [in Russian].
Received 30 January 2010
Link to Fulltext
<< Previous article | Volume 45, Issue 3 / 2010 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100