| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 44, Issue 5 / 2009 | Next article >> |
E.A. Muravleva and L.V. Muravleva, "Unsteady Flows of a Viscoplastic Medium in Channels," Mech. Solids. 44 (5), 792-812 (2009) |
Year |
2009 |
Volume |
44 |
Number |
5 |
Pages |
792-812 |
DOI |
10.3103/S0025654409050173 |
Title |
Unsteady Flows of a Viscoplastic Medium in Channels |
Author(s) |
E.A. Muravleva (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, catmurav@gmail.ru)
L.V. Muravleva (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, lvmurav@gmail.ru) |
Abstract |
We numerically study the nonstationary Poiseuille problem for a Bingham-Il'yushin viscoplastic medium in ducts of various cross-sections. The medium acceleration and deceleration problems are solved by using the Duvaut-Lions variational setting and the finite-difference scheme proposed by the authors. The dependence of the stopping time on internal parameters such as density, viscosity, yield stress, and the cross-section geometry is studied. The obtained results are in good agreement with the well-known theoretical estimates of the stopping time. The numerical solution revealed a peculiar characteristic of the stagnant zone location, which is specific to unsteady flows. In the annulus, disk, and square, the stagnant zones arising shortly before the flow cessation surround the entire boundary contour; but for other domains, the stagnant zones go outside the critical curves surrounding the stagnant zones in the steady flow. The steady and unsteady flows are studied in some domains of
complicated shape. |
Keywords |
viscoplastic Bingham-Ilyushin medium, unsteady flow, variational method |
References |
1. | D. M. Klimov, A. G. Petrov, and D. V. Georgievskii,
Viscoplastic Flows: Dynamical Chaos, Stability, Mixing
(Nauka, Moscow, 2005)
[in Russian]. |
2. | E. J. Dean, R. Glowinski, and G. Guidoboni,
"On the Numerical Simulation of Bingham Visco-Plastic Flow: Old and New Results,"
J. Non-Newtonian Fluid Mech.
142 (1-3), 36-62 (2007). |
3. | O. B. Magomedov and B. E. Pobedrya,
"Certain Problems of Viscoelastoplastic Flow,"
in Elasticity and Non-Elasticity, No. 4
(Izd-vo MGU, Moscow, 1975),
pp. 152-169
[in Russian]. |
4. | R. V. Goldstein and V. M. Entov,
Qualitative Methods in Continuum Mechanics
(Nauka, Moscow, 1989; Wiley, New York, 1994). |
5. | P. P. Mosolov and V. P. Miasnikov,
"Variational Methods in the Theory of the Fluidity of a Viscous-Plastic Medium,"
Prikl. Mat. Mekh.
29 (3), 468-492 (1965)
[J. Appl. Math. Mech. (Engl. Transl.)
29 (3), 545-577 (1965)]. |
6. | P. P. Mosolov and V. P. Miasnikov,
"On Stagnant Flow Regions of a Viscous-Plastic Medium in Pipes,"
Prikl. Mat. Mekh.
30 (4), 705-717 (1966)
[J. Appl. Math. Mech. (Engl. Transl.)
30 (4), 841-854 (1966)]. |
7. | P. P. Mosolov and V. P. Miasnikov,
"On Qualitative Singularities of the Flow of a Viscoplastic Medium in Pipes,"
Prikl. Mat. Mekh.
31 (3), 581-585 (1967)
[J. Appl. Math. Mech. (Engl. Transl.)
31 (3), 609-613 (1967)]. |
8. | G. Duvaut and J.-L. Lions,
Les Inèquations en Mècanique et Physique
(Dunod, Paris, 1972; Nauka, Moscow, 1980). |
9. | I. Ekeland and R. Temam,
Convex Analysis and Variational Problems
(North-Holland, Amsterdam, 1976; Mir, Moscow, 1979). |
10. | A. G. Petrov and L. V. Cherepanov,
"Exact Solutions of the Problem of Unsteady Flow
of a Viscoplastic Medium in a Circular Pipe,"
Izv. Akad. Nauk. Mekh. Zhidk. Gaza,
No. 2. 13-24 (2003)
[Fluid Dyn. (Engl. Transl.)
38 (2), 175-185 (2003)]. |
11. | R. Glowinski, J.-L. Lions, and R. Trèmolières,
Analyse Numèrique des Inèquations Variationnelles
(Dunod, Parix, 1976; Mir, Moscow, 1979). |
12. | N. Roquet and P. Saramito,
"An Adaptive Finite Element Method for Viscoplastic Fluid Flows in Pipes,"
Comput. Meth. Appl. Mech. Eng.
190 (40), 5391-5412 (2001). |
13. | M. A. Moyers-Gonzalez and I. A. Frigaard,
"Numerical Solution of Duct Flows of Multiple Visco-Plastic Fluids,"
J. Non-Newtonian Fluid Mech.
122 (1-3), 227-241 (2004). |
14. | R. R. Huilgol and Z. You,
"Application of the Augmented Lagrangian Method to Steady Pipe Flows of Bingham, Casson, and Herschel-Bulkley Fluids,"
J. Non-Newtonian Fluid Mech.
128 (2-3), 126-143 (2005). |
15. | E. A. Muravleva,
"Finite-Difference Schemes for the Computation of Viscoplastic Medium Flows in a Channel,"
Mat. Modelirovanie,
No. 12, 76-88 (2008)
[Math. Models Comput. Simul. (Engl. Transl.)
1 (6), 768-779 (2009)]. |
16. | M. Chatzimina, G. C. Georgiou, I. Argyropaidas, et al.,
"Cessation of Couette and Poiseuille Flows of a Bingham Plastic and Finite Stopping Times,"
JNNFM
129 (3), 117-127 (2005). |
17. | M. Chatzimina, C. Xenophontosa, G. C. Georgiou, et al.
"Cessation of Annular Poiseuille Flows of Bingham Plastics,"
JNNFM
142 (1-3), 135-142 (2007). |
18. | H. Zhu and D. De Kee,
"A Numerical Study of Couette Flow of Non-Newtonian Fluids with a Yield Stress,"
J. Non-Newtonian Fluid Mech.
143 (2-3), 64-70 (2007). |
19. | V. P. Beskachko, O. A. Golovnya, and A. E. Korenchenko,
"Numerical Model of Nonstationary Flow of a Viscoplastic Fluid in a Rotational Viscosimeter,"
Inzh. Fiz. Zh.,
No. 1, 12-14 (2007)
[J. Engng Phys. Thermophys. (Engl. Transl.)
80 (1), 11-14 (2007)]. |
20. | A. E. Korenchenko, V. P. Beskachko, and O. A. Golovnya,
"Possibility of Identifying the Viscoplastic Properties of Liquids in Experiments with an Oscillating-Cup Viscometer,"
Zh. Prikl. Mekh. Tekh. Fiz.
47 (6), 59-63 (2006)
[J. Appl. Mech. Tech. Phys. (Engl. Transl.)
47 (6), 821-824 (2006)]. |
21. | A. A. Il'yushin,
"Deformation of Viscoplastic Bodies,"
Uchen. Zap. MGU. Mekh.
39, 3-81 (1940). |
22. | P. P. Mosolov,
"Variational Methods in Nonstationary Problems (Parabolic Case),"
Izv. Akad. Nauk SSSR. Ser. Mat.
34 (2), 425-457 (1970).
[Math. USSR Izv. (Engl. Transl.)
4 (2), 431-463 (1970)], |
23. | M. Fortin and R. Glowinski,
Augmented Lagrangian Methods: Applications
to the Numerical Solution of Boundary-Value Problems
(North-Holland, Amsterdam, 1983). |
24. | E. A. Muravleva,
"Solution of a Nonstationary Problem for the Bingham Medium
on the Basis of Evolutional Variational Inequalities,"
in 7th All-Russian Seminar "Grid Methods in Boundary-Value
Problems and Applications
(Kazan, 2007),
pp. 213-218
[in Russian]. |
25. | E. A. Muravleva,
"The Problem of Stopping the Flow of a Viscoplastic Medium in a Channel,"
Vestnik Moskov. Univ. Ser. I. Mat. Mekh.,
64 (1), 67-70 (2009)
[Moscow Univ. Mech. Bull. (Engl. Transl.)
64 (1), 25-28 (2009)]. |
26. | G. I. Marchuk,
Splitting Methods
(Nauka, Moscow, 1988)
[in Russian]. |
|
Received |
24 July 2008 |
Link to Fulltext |
|
<< Previous article | Volume 44, Issue 5 / 2009 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|