Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-5pp.671-676

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
V.P. Ol'shanskii and S.V. Ol'shanskii, "On the Vertical Ascent of a Spherical Body of Increasing Mass," Mech. Solids. 44 (5), 671-676 (2009)
Year 2009 Volume 44 Number 5 Pages 671-676
DOI 10.3103/S0025654409050033
Title On the Vertical Ascent of a Spherical Body of Increasing Mass
Author(s) V.P. Ol'shanskii (Petro Vasilenko Kharkov National Technical University of Agriculture, Artema 44, Kharkov, 61002 Ukraine)
S.V. Ol'shanskii (Petro Vasilenko Kharkov National Technical University of Agriculture, Artema 44, Kharkov, 61002 Ukraine, stasolsh@mail.ru)
Abstract We show that if the dependence of the drag force on the velocity is quadratic and the time dependence of the radius of a spherical body is linear, then the first integral of the equation of motion can be written out in closed form in terms of Bessel functions. To calculate the second integral, we propose concise approximate formulas. Their accuracy is verified by comparing the results obtained by analytic and numerical solution of the Cauchy problem.
Keywords spherical particle, increasing radius, mass variability, vertical motion, special functions
References
1.  I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass (Gostekhizdat, Moscow, 1952) [in Russian].
2.  I. V. Meshcherskii, Collection of Problems in Theoretical Mechanics (Nauka, Moscow, 1986) [in Russian].
3.  V. P. Ol'shanskii and S. V. Ol'shanskii, "On Nonlinear Model of Fall of a Vaporizing Droplet as a Material Point of Variable Mass," Mekh. Mashinostr., No. 1, 23-28 (2006).
4.  M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972; Nauka, Moscow, 1979).
5.  I. F. Obraztsov, B. V. Nerubailo, and I. V. Andrianov, Asymptotic Methods in the Structural Mechanics of Thin-Walled Structures (Mashinostroenie, Moscow, 1991) [in Russian].
6.  N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].
Received 11 April 2007
Link to Fulltext
<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100