Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-5pp.792-812

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
E.A. Muravleva and L.V. Muravleva, "Unsteady Flows of a Viscoplastic Medium in Channels," Mech. Solids. 44 (5), 792-812 (2009)
Year 2009 Volume 44 Number 5 Pages 792-812
DOI 10.3103/S0025654409050173
Title Unsteady Flows of a Viscoplastic Medium in Channels
Author(s) E.A. Muravleva (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, catmurav@gmail.ru)
L.V. Muravleva (Lomonosov Moscow State University, GSP-2, Leninskie Gory, Moscow, 119992 Russia, lvmurav@gmail.ru)
Abstract We numerically study the nonstationary Poiseuille problem for a Bingham-Il'yushin viscoplastic medium in ducts of various cross-sections. The medium acceleration and deceleration problems are solved by using the Duvaut-Lions variational setting and the finite-difference scheme proposed by the authors. The dependence of the stopping time on internal parameters such as density, viscosity, yield stress, and the cross-section geometry is studied. The obtained results are in good agreement with the well-known theoretical estimates of the stopping time. The numerical solution revealed a peculiar characteristic of the stagnant zone location, which is specific to unsteady flows. In the annulus, disk, and square, the stagnant zones arising shortly before the flow cessation surround the entire boundary contour; but for other domains, the stagnant zones go outside the critical curves surrounding the stagnant zones in the steady flow. The steady and unsteady flows are studied in some domains of complicated shape.
Keywords viscoplastic Bingham-Ilyushin medium, unsteady flow, variational method
References
1.  D. M. Klimov, A. G. Petrov, and D. V. Georgievskii, Viscoplastic Flows: Dynamical Chaos, Stability, Mixing (Nauka, Moscow, 2005) [in Russian].
2.  E. J. Dean, R. Glowinski, and G. Guidoboni, "On the Numerical Simulation of Bingham Visco-Plastic Flow: Old and New Results," J. Non-Newtonian Fluid Mech. 142 (1-3), 36-62 (2007).
3.  O. B. Magomedov and B. E. Pobedrya, "Certain Problems of Viscoelastoplastic Flow," in Elasticity and Non-Elasticity, No. 4 (Izd-vo MGU, Moscow, 1975), pp. 152-169 [in Russian].
4.  R. V. Goldstein and V. M. Entov, Qualitative Methods in Continuum Mechanics (Nauka, Moscow, 1989; Wiley, New York, 1994).
5.  P. P. Mosolov and V. P. Miasnikov, "Variational Methods in the Theory of the Fluidity of a Viscous-Plastic Medium," Prikl. Mat. Mekh. 29 (3), 468-492 (1965) [J. Appl. Math. Mech. (Engl. Transl.) 29 (3), 545-577 (1965)].
6.  P. P. Mosolov and V. P. Miasnikov, "On Stagnant Flow Regions of a Viscous-Plastic Medium in Pipes," Prikl. Mat. Mekh. 30 (4), 705-717 (1966) [J. Appl. Math. Mech. (Engl. Transl.) 30 (4), 841-854 (1966)].
7.  P. P. Mosolov and V. P. Miasnikov, "On Qualitative Singularities of the Flow of a Viscoplastic Medium in Pipes," Prikl. Mat. Mekh. 31 (3), 581-585 (1967) [J. Appl. Math. Mech. (Engl. Transl.) 31 (3), 609-613 (1967)].
8.  G. Duvaut and J.-L. Lions, Les Inèquations en Mècanique et Physique (Dunod, Paris, 1972; Nauka, Moscow, 1980).
9.  I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).
10.  A. G. Petrov and L. V. Cherepanov, "Exact Solutions of the Problem of Unsteady Flow of a Viscoplastic Medium in a Circular Pipe," Izv. Akad. Nauk. Mekh. Zhidk. Gaza, No. 2. 13-24 (2003) [Fluid Dyn. (Engl. Transl.) 38 (2), 175-185 (2003)].
11.  R. Glowinski, J.-L. Lions, and R. Trèmolières, Analyse Numèrique des Inèquations Variationnelles (Dunod, Parix, 1976; Mir, Moscow, 1979).
12.  N. Roquet and P. Saramito, "An Adaptive Finite Element Method for Viscoplastic Fluid Flows in Pipes," Comput. Meth. Appl. Mech. Eng. 190 (40), 5391-5412 (2001).
13.  M. A. Moyers-Gonzalez and I. A. Frigaard, "Numerical Solution of Duct Flows of Multiple Visco-Plastic Fluids," J. Non-Newtonian Fluid Mech. 122 (1-3), 227-241 (2004).
14.  R. R. Huilgol and Z. You, "Application of the Augmented Lagrangian Method to Steady Pipe Flows of Bingham, Casson, and Herschel-Bulkley Fluids," J. Non-Newtonian Fluid Mech. 128 (2-3), 126-143 (2005).
15.  E. A. Muravleva, "Finite-Difference Schemes for the Computation of Viscoplastic Medium Flows in a Channel," Mat. Modelirovanie, No. 12, 76-88 (2008) [Math. Models Comput. Simul. (Engl. Transl.) 1 (6), 768-779 (2009)].
16.  M. Chatzimina, G. C. Georgiou, I. Argyropaidas, et al., "Cessation of Couette and Poiseuille Flows of a Bingham Plastic and Finite Stopping Times," JNNFM 129 (3), 117-127 (2005).
17.  M. Chatzimina, C. Xenophontosa, G. C. Georgiou, et al. "Cessation of Annular Poiseuille Flows of Bingham Plastics," JNNFM 142 (1-3), 135-142 (2007).
18.  H. Zhu and D. De Kee, "A Numerical Study of Couette Flow of Non-Newtonian Fluids with a Yield Stress," J. Non-Newtonian Fluid Mech. 143 (2-3), 64-70 (2007).
19.  V. P. Beskachko, O. A. Golovnya, and A. E. Korenchenko, "Numerical Model of Nonstationary Flow of a Viscoplastic Fluid in a Rotational Viscosimeter," Inzh. Fiz. Zh., No. 1, 12-14 (2007) [J. Engng Phys. Thermophys. (Engl. Transl.) 80 (1), 11-14 (2007)].
20.  A. E. Korenchenko, V. P. Beskachko, and O. A. Golovnya, "Possibility of Identifying the Viscoplastic Properties of Liquids in Experiments with an Oscillating-Cup Viscometer," Zh. Prikl. Mekh. Tekh. Fiz. 47 (6), 59-63 (2006) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 47 (6), 821-824 (2006)].
21.  A. A. Il'yushin, "Deformation of Viscoplastic Bodies," Uchen. Zap. MGU. Mekh. 39, 3-81 (1940).
22.  P. P. Mosolov, "Variational Methods in Nonstationary Problems (Parabolic Case)," Izv. Akad. Nauk SSSR. Ser. Mat. 34 (2), 425-457 (1970). [Math. USSR Izv. (Engl. Transl.) 4 (2), 431-463 (1970)],
23.  M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (North-Holland, Amsterdam, 1983).
24.  E. A. Muravleva, "Solution of a Nonstationary Problem for the Bingham Medium on the Basis of Evolutional Variational Inequalities," in 7th All-Russian Seminar "Grid Methods in Boundary-Value Problems and Applications (Kazan, 2007), pp. 213-218 [in Russian].
25.  E. A. Muravleva, "The Problem of Stopping the Flow of a Viscoplastic Medium in a Channel," Vestnik Moskov. Univ. Ser. I. Mat. Mekh., 64 (1), 67-70 (2009) [Moscow Univ. Mech. Bull. (Engl. Transl.) 64 (1), 25-28 (2009)].
26.  G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].
Received 24 July 2008
Link to Fulltext
<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100