Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-5pp.691-704

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
A.V. Andreev, "Method for Determining Power-Type Complex Singularities in Solutions of Singular Integral Equations with Generalized Kernels and Complex Conjugate Unknowns," Mech. Solids. 44 (5), 691-704 (2009)
Year 2009 Volume 44 Number 5 Pages 691-704
DOI 10.3103/S0025654409050069
Title Method for Determining Power-Type Complex Singularities in Solutions of Singular Integral Equations with Generalized Kernels and Complex Conjugate Unknowns
Author(s) A.V. Andreev (Elektrogorsk Research and Engineering Center for Nuclear Power Plant Safety (FSUE "EREC"), Svyatogo Konstanina 6, Electrogorsk, Moscow Region, 142530 Russia, andreev@erec.ru)
Abstract We develop a method for determining power-type complex singularities of solutions for a class of one-dimensional singular integral equations with generalized kernels and complex conjugate unknown functions. By analyzing the characteristic part of a singular integral equation, we reduce the problem of determining the solution singularity exponents at the ends of the integration interval to two independent transcendental equations for these exponents. We show that the distribution of admissible singularity exponents is of continuous character. We present numerical results for a two-dimensional elasticity problem whose mathematical statement leads to a singular integral equation of the class under study. We also reveal the drawbacks of one classical approach to the determination of stress field singularities.
Keywords singular integral equation, generalized kernel, solution singularity, complex function
References
1.  F. E. Erdogan, G. D. Gupta, and T. S. Cook, "The Numerical Solutions of Singular Integral Equations," in Mechanics of Fracture, Vol. 1: Methods of Analysis and Solutions of Crack Problems (Noordhoff Intern. Publ., Leyden, 1973), pp. 368-425.
2.  M. P. Savruk, Two-Dimensional Problems of Elasticity for Bodies with Cracks (Naukova Dumka, Kiev, 1981) [in Russian].
3.  N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968) [in Russian].
4.  H. F. Bueckner, "On a Class of Singular Integral Equations," J. Math. Anal. Appl. 14 (3), 392-426 (1966).
5.  R. V. Duduchava, Integral Equations of Convolution with Discontinuous Presymbols, Singular Integral Equations with Fixed Singularities, and Their Applications to Problems in Mechanics (Metsniereba, Tbilisi, 1979) [in Russian].
6.  P. S. Theocaris and N. I. Ioakimidis, "The V-Notched Elastic Half-Plane Problems," Acta Mech. 32 (1-3), 125-140 (1979).
7.  M. P. Savruk, E. Madenci, and S. Shkarayev, "Singular Integral Equations of the Second Kind with Generalized Cauchy-Type Kernels and Variable Coefficients," Int. J. Numer. Meth. Engng 45 (10), 1457-1470 (1999).
8.  A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics (Nauka, Moscow, 1984) [in Russian].
9.  A. V. Andreev, "Direct Numerical Method for Solving Singular Integral Equations of the First Kind with Generalized Kernels," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 126-146 (2005) [Mech. Solids (Engl. Transl.) 40 (1), 104-119 (2005)].
10.  F. D. Gakhov, Boundary Value Problems (Fizmatgiz, Moscow, 1958) [in Russian].
11.  A. I. Kalandiia, "Remarks on the Singularity of Elastic Solutions near Corners," Prikl. Mat. Mekh. 33 (1), 132-135 (1969) [J. Appl. Math. Mech. (Engl. Transl.) 33 (1), 127-131 (1969)].
12.  F. Erdogan and V. Biricikoglu, "Two Bounded Half Planes with a Crack Going through the Interface," Int. J. Engng Sci. 11 (7), 745-766 (1973).
13.  A. M. Lin'kov, Complex Method of Boundary Integral Equations in Elasticity (Nauka, St. Petersburg, 1999) [in Russian].
14.  W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1992) (http://www.nr.com).
15.  D. N. Fenner, "Stress Singularities in Composite Materials with an Arbitrary Oriented Crack Meeting an Interface," Int. J. Fract. 12 (15), 705-721 (1976).
16.  W. Yong-Li, "Crack Tip Stress Singularities in a Bimaterial with an Inclined Interface," Int. J. Fract. 54, R65-R72 (1992).
17.  M. L. Williams, "Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension," J. Appl. Mech. 19 (4), 526-528 (1952).
18.  G. B. Sinclair, "Stress Singularities in Classical Elasticity - II: Asymptotic Identification," Appl. Mech. Rev. 57, 385-439 (2004).
Received 07 August 2006
Link to Fulltext
<< Previous article | Volume 44, Issue 5 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100