| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12804 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8044
|
In English (Mech. Solids): | | 4760 |
|
<< Previous article | Volume 44, Issue 1 / 2009 | Next article >> |
L. V. Kovtanyuk and E. V. Murashkin, "Onset of residual stress fields near solitary spherical inclusions in a perfectly elastoplastic medium," Mech. Solids. 44 (1), 79-87 (2009) |
Year |
2009 |
Volume |
44 |
Number |
1 |
Pages |
79-87 |
DOI |
10.3103/S0025654409010087 |
Title |
Onset of residual stress fields near solitary spherical inclusions in a perfectly elastoplastic medium |
Author(s) |
L. V. Kovtanyuk (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, Radio 5, Vladivostok, 690041, Russia, burenin@iacp.dvo.ru)
E. V. Murashkin (Institute for Automation and Control Processes, Far East Branch of the Russian Academy of Sciences, Radio 5, Vladivostok, 690041, Russia, evgeni_mur@rambler.ru) |
Abstract |
When computing residual stresses in deformable solids, one has to use the theory of elastoplastic solids, because the final level and distribution of residual stresses is determined exactly by the accumulated reversible strains. In turn, to compute the elastic strains, one needs to determine the displacement field. The problem of determining displacements in statically determinate problems of the theory of perfect elastoplastic solids was considered for the first time in [1, 2]. The techniques proposed there permitted solving the problem of finding the residual stresses near a cylindrical cavity in a perfectly elastoplastic medium [3]. It was shown that secondary plastic flow [4] may arise in the unloading processes, which significantly redistributes the final residual stresses. In the present paper, we consider the loading and unloading problems for a ball with a rigid or elastic spherical inclusion. We study the onset of secondary plastic flow under unloading and compute the residual stresses. Thus, we model the onset of the residual stress field near a more rigid inhomogeneity. The case of a softer inhomogeneity was essentially considered in [3], where the onset of the residual stress field near a continuity flaw was studied. |
References |
1. | D. D. Ivlev, "On the Determination of Displacements in Galin’s Problem," Prikl. Mat. Mekh. 21(5), 716-718 (1957) [J. Appl. Math. Mech. (Engl. Transl.) 21 (5), 716-718 (1957)]. |
2. | D. D. Ivlev, "On the Determination of Displacements in Elastoplastic Problems of the Theory of Ideal Plasticity," in Progress in Mechanics of Deformable Media (Dedicated to Academician B. G. Galerkin on the Occasion of His 100th Birthday (Nauka, Moscow, 1957), pp. 236-240 [in Russian]. |
3. | A. A. Burenin and L. V. Kovtanyuk, "Residual Stresses near a Cylindrical Cavity in an Ideal Elastoplastic Medium," in Problems of Mechanics of Nonelastic Strains. Collection of Papers Dedicated to D. D. Ivlev on the Occasion of His 70th Birthday (Fizmatlit, Moscow, 2001), pp. 75-95 [in Russian]. |
4. | A. A. Burenin, L. V. Kovtanyuk, and M. V. Polonik, "The Possibility of Reiterated Plastic Flow at the Overall Unloading of an Elastoplastic Medium," Dokl. Ross. Akad. Nauk 375(6), 767-769 (2000) [Dokl. Phys. (Engl. Transl.) 45 (12), 694-696 (2000)]. |
|
Received |
12 January 2006 |
Link to Fulltext |
|
<< Previous article | Volume 44, Issue 1 / 2009 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|