Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-1pp.62-69

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 44, Issue 1 / 2009 | Next article >>
D. A. Shlyakhin, "Nonstationary axisymmetric electroelasticity problem for an anisotropic piezoceramic radially polarized cylinder," Mech. Solids. 44 (1), 62-69 (2009)
Year 2009 Volume 44 Number 1 Pages 62-69
DOI 10.3103/S0025654409010063
Title Nonstationary axisymmetric electroelasticity problem for an anisotropic piezoceramic radially polarized cylinder
Author(s) D. A. Shlyakhin (Samara State Architecture and Civil Engineering University, Molodogvardeyskaya 194, Samara, 443001, Russia, n-1-sh@ya.ru)
Abstract We consider an axisymmetric nonstationary electroelasticity problem for an anisotropic piezoceramic radially polarized cylinder of finite size whose lateral surface is subjected to an electric voltage that is an arbitrary function of the axial coordinate and time. A new closed-form solution is constructed by the vector eigenfunction expansion method in the form of a structural finite transform algorithm. This solution permits determining the natural vibration frequencies, the stress-strain state of an element, and the electric field potential and intensity. The results permit analyzing and optimizing the operation of inverse piezoelectric effect devices with cylindrical transducers.
References
1.  V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity of Piezoelectrics and Electrically Conductive Solids (Nauka, Moscow, 1988; Gordon & Breach Science Publishers, New York-London-Paris-Montreux-Tokyo-Melbourne, 1988).
2.  V. T. Grinchenko, A. F. Ulitko, and N. A. Shul’ga, Electroelasticity, Vol. 5, Mechanics of Coupled Fields in Structural Elements (Naukova Dumka, Kiev, 1989) [in Russian].
3.  O. Yu. Zharii, "The Eigenfunction Expansion Method in Dynamic Electroelasticity Problems," Prikl. Mat. Mekh. 54(1), 109-115 (1990) [J. Appl. Math. Mech. (Engl. Transl.) 54 (1), 88-93 (1990)].
4.  V. N. Mel’nik and M. N. Moskal’kov, "On the Coupled Non-Stationary Electro-Elastic Oscillations of a Piezoceramic Cylinder with Radial Polarization," Zh. Vychisl. Mat. Mat. Fiz. 28(11), 1755-1756 (1988) [U.S.S.R. Comput. Math. Math. Phys. (Engl. Transl.) 28 (6), 109-110 (1988)].
5.  Yu. E. Senitskii, Study of Construction Element Elastic Strain under Dynamical Actions by the Finite Integral Transform Method (Izd-vo Saratov Univ., Saratov, 1985) [in Russian].
6.  Yu. E. Senitskii, "Multicomponent Generalized Finite Integral Transform and Its Application to Nonstationary Problems of Mechanics," Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 57-63 (1991) [Russ. Math. (Iz VUZ) (Engl. Transl.)].
7.  Yu. E. Senitskii, "The Dynamic Problem of Electroelasticity for a Non-Homogeneous Cylinder," Prikl. Mat. Mekh. 57(1), 116-122 (1993) [J. Appl. Math. Mech. (Engl. Transl.) 57 (1), 133-139 (1993)].
8.  Yu. E. Senitskii and D. A. Shlyakhin, "The Nonstationary Axisymmetric Problem of Electroelasticity for a Thick Circular Anisotropic Piezoceramic Plate," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 78-87 (1999) [Mech. Solids (Engl. Transl.) 34 (1), 66-74 (1999)].
Received 22 February 2006
Link to Fulltext
<< Previous article | Volume 44, Issue 1 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100