Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2009-2pp.204-213

Archive of Issues

Total articles in the database: 12804
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4760

<< Previous article | Volume 44, Issue 2 / 2009 | Next article >>
S. E. Perelyaev, "On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group," Mech. Solids. 44 (2), 204-213 (2009)
Year 2009 Volume 44 Number 2 Pages 204-213
DOI 10.3103/S0025654409020058
Title On the correspondence between the three- and four-dimensional parameters of the three-dimensional rotation group
Author(s) S. E. Perelyaev (Moscow Institute of Electromechanics and Automatics, Aviatsionnyy per. 5, Moscow, 125319, Russia, pers2030@yandex.ru)
Abstract A fundamental kinematic theorem due to Euler permits synthesizing a series of three- and four-dimensional orientation parameters that correspond to each other in spaces of the same dimension.

We use the theorem about the homeomorphism of two topological spaces (the three-dimensional sphere S3R4 with a single punctured (removed) point and the three-dimensional space R3) to establish a one-to-one mutually continuous correspondence between the four- and three-dimensional kinematic parameters prescribed in these spaces. The latter can be proved using the stereographic projection of points of the sphere S3 onto the hyperplane R3. For the normalized (Hamiltonian) Rodrigues-Hamilton parameters, we present a method of stereographic projection of a point belonging to the three-dimensional sphere S3 onto the oriented space R3. We present a family of local kinematic parameters obtained by the method of mapping four symmetric kinematic parameters of the space R4 onto the oriented real space R3.

In contrast to the well-known four symmetric global parameters of the Rodrigues-Hamilton orientation, the synthesized three-dimensional orientation parameters are local (have two singular points ±360°). The differential equations of rotation in the three-dimensional orientation parameters are obtained by the projection method.

We present the three-dimensional parameters corresponding to the classical Hamiltonian quaternions defined in the four-dimensional vector space R4.
References
1.  V. Ph. Zhuravlev, Foundations of Theoretical Mechanics (Nauka, Fizmatlit, Moscow, 1997) [in Russian].
2.  R. Penrose and W. Rindler, Spinors and Space-Time (Cambrige University press, Cambridge, 1986; Mir, Moscow, 1987).
3.  H. Goldstein, Classical Mechanics (Addison-Wesley, Cambridge, 1951; Gostekhizdat, Moscow, 1957).
4.  E. T. Whittaker, Analytical Dynamics (Gostekhizdat, Moscow-Leningrad, 1937) [in Russian].
5.  J. L. Synge, Classical Dynamics (Springer-Verlag, Berlin, 1960; Fizmatgiz, Moscow, 1963).
6.  A. Yu. Ishlinskii, Orientation, Gyroscopes, and Inertial Navigation (Nauka, Moscow, 1976) [in Russian].
7.  A. I. Lurie, Analytic Mechanics (Fizmatgiz, Moscow, 1961; Springer, Berlin, 2001).
8.  S.M. Onishchenko, The Use of Hypercomplex Numbers in Inertial Navigation Theory (Naukova Dumka, Kiev, 1983) [in Russian].
9.  V. N. Branets and I. P. Shmyglevskii, Application of Quaternions to Rigid Body Orientation Problems (Nauka, Moscow, 1973) [in Russian].
10.  S. N. Kirpichnikov and V. S. Novoselov, Mathematical Aspects of Kinematics of Solids (Izd-vo LGU, Leningrad, 1986) [in Russian].
11.  A. P. Panov, Mathematical Foundations of Theory of Inertial Orientation (Naukova Dumka, Kiev, 1995) [in Russian].
12.  B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry. Methods and Applications (Nauka, Moscow, 1986; Springer, New York, 1990).
13.  J. Stuelpnagel, "On the Parametrization of the Three-Dimensional Rotation Group," SIAM REV. 6(4), 422–429 (1964).
14.  L. S. Pontryagin, Continuous Groups (Nauka, Moscow, 1973) [in Russian].
15.  E.M. Cartan, The Theory of Spinors (MIT Press, Cambridge, 1946; Izd-vo Inostr. Lit., Moscow, 1947).
16.  B. L. Van der Warden, Algebra (Frederick Ungar, New York, 1970; Nauka, Moscow, 1979).
17.  A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976; Dover Publications, New York, 1999).
18.  F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1967) [in Russian].
19.  I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers (Nauka, Moscow, 1973) [in Russian].
20.  V. I. Smirnov, A Course of Higher Mathematics (Gostekhizdat, Moscow, 1956), Vol. 1, Part 1 [in Russian].
21.  H. J. Marcelo and D. T. Vassilios, "Singularities of Euler and Roll-Pitch-Yaw Representations," IEEE Trans. on Aerospace and Electronic Systems 19(1), 59–69 (1987).
22.  J. L. Junkins and M. D. Shuster, "The Geometry of the Euler Angles," J. Astonaut. Sci. 41(4), 531–543 (1993).
23.  J. E. Bortz, "A New Mathematical Formulation for Strapdown Inertial Navigation," IEEE Trans. on Aerospace and Electronic Systems 7(1), 61–66 (1971).
24.  S. E. Perelyaev, "3D Parametrization of the Rigid Body Rotation Group in Systems of Gyroscopic Orientation," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 19–31 (2003) [Mech. Solids (Engl. Transl.) 38 (3), 12–21 (2003)].
25.  S. E. Perelyaev, "On the Global Parametrizations of a Group of 3D Rotations," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 30–44 (2006) [Mech. Solids (Engl. Transl.) 41 (3), 23–33 (2006)].
26.  G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1977).
27.  T. Troilo, "Several Theorems about Precession Motions and Regular Precession," Mechanics. Periodic Collection of Translations of Foreign Papers, No. 5 (141), 43–47 (1973).
28.  P. Tsiotras and J. M. Longuski, "A New Parametrizations of the Attitude Kinematics," J. Astonaut. Sci. 43(3), 243–262 (1995).
29.  M. D. Shuster, "A Survey of Attitude Representations," J. Astonaut. Sci. 41(4), 439–517 (1993).
30.  S. R. Marandi and V. J. Modi, "A Preferred Coordinate System and the Associated Orientation Representation in Attitude Dynamics," Acta Astonaut. 15(11), 833–843 (1987).
31.  Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Mechanics of Solids and Their Applications (Nauka, Fizmatlit, Moscow, 2006) [in Russian].
Received 21 September 2007
Link to Fulltext
<< Previous article | Volume 44, Issue 2 / 2009 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100