Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2008-1pp.153-164

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 43, Issue 1 / 2008 | Next article >>
M. A. Chuev, "Differential equations of program motions of a mechanical system," Mech. Solids. 43 (1), 153-164 (2008)
Year 2008 Volume 43 Number 1 Pages 153-164
DOI 10.3103/S0025654408010160
Title Differential equations of program motions of a mechanical system
Author(s) M. A. Chuev (Kaluga Branch of Bauman Moscow State Technical University, Bazhenova 2, Kaluga, 2486000, Russia)
Abstract We obtain all types and forms of differential equations describing the program motions of a mechanical system both for ideal and nonideal primary constraints. We find the forms of differential equations of motion that significantly simplify the mathematical transformations required to obtain them in explicit form.
References
1.  M. A. Chuev, "Programmed Motions of a Mechanical System," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 34-41 (2002) [Mech. Solids (Engl. Transl.) 37 (3), 28-35 (2002)].
2.  I. V. Meshcherskii, Differential Constraints in the Case of a Single Material Point (Kharkov Univ. Typography, Kharkov, 1887) [in Russian].
3.  M. A. Chuev, "Differential Equations of Program Motions of a Mechanical System (Second Type)," Vestnik RUDN. Ser. Prikl. Mat. i Inform, No. 1, 45-52 (2001).
4.  M. A. Chuev, "Differential Equations of Program Motions of Mechanical System," in Theses of 37th All-Russia Scientific Conference in Problems of Mathematics, Informatics, Physics, Chemistry, and Methodology of Teaching in Natural Sciences. Math. Section (Izd-vo RUDN, Moscow, 2001), pp. 50-51 [in Russian].
5.  M. A. Chuev, "Differential Equations of Program Motions of Mechanical System," in Stability and Vibrations of Nonlinear Systems of Control: Theses of 7th Intern. Seminar (Inst. for Problems of Control, Moscow, 2002), pp. 140-142 [in Russian].
6.  M. A. Chuev, "Differential Equations of Program Motions of Mechanical System," in All-Russia Sci. Tech. Conf.: Progressive Technologies, Constructions, and Systems in Instrumental and Mechanical Engineering. Materials, Vol. 1 (Izd-vo MGTU im. Baumana, Moscow, 2003), p. 372 [in Russian].
7.  M. A. Chuev, "To the Problem of Analytic Method for Mechanism Synthesizing," Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 8, 165-167 (1974).
8.  M. A. Chuev, "Method of Incomplete Integral in Mechanics of Nonholonomic Systems," in Foundations of Analytic Mechanics, Ed. by V. V. Dobronravov (Bysshaya Shkola, Moscow, 1976) [in Russian].
9.  N. N. Polyakhov, S. A. Zegzhda, and M. P. Yushkov, "A Generalization of the Gauss Principle to the Case of Nonholonomic Systems of Higher Order," Dokl. Akad. Nauk SSSR 269(6), 1329-1330 (1983) [Sov. Math. Dokl. (Engl. Transl.)].
10.  Sh. Kh. Soltakhanov, "On a Modification of the Polyakhov-Zegzhda-Yushkov Principle," Vestn. Leningrad. Univ. Mat. Mekh. Astronom., No. 4, 58-61 (1990) [Vestnik Leningrad Univ. Math. (Engl. Transl.)].
11.  I. A. Kaplan, Practical Tasks in Higher Mathematics, Part 3 (Vishch. Shk., Kharkov, 1974) [in Russian].
12.  G. Korn and T. Korn, Mathematical handbook for Scientists and Engineers (McGraw-Hill, New York, 1968; Nauka, Moscow, 1970).
13.  M. M. Gokhberg (Editor), Reference Book in Cranes, Vol. 2 (Mashinostroenie, Moscow, 1988) [in Russian].
Received 16 May 2005
Link to Fulltext
<< Previous article | Volume 43, Issue 1 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100