Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2008-2pp.269-276

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 43, Issue 2 / 2008 | Next article >>
N. N. Belov, P. V. Dzyuba, O. V. Kabantsev, D. G. Kopanitsa, A. A. Yugov, and N. T. Yugov, "Mathematical modeling of dynamic fracture processes in concrete," Mech. Solids. 43 (2), 269-276 (2008)
Year 2008 Volume 43 Number 2 Pages 269-276
DOI 10.3103/S0025654408020131
Title Mathematical modeling of dynamic fracture processes in concrete
Author(s) N. N. Belov (Tomsk State University of Architecture and Civil Engineering, Solyanaya pl. 2, Tomsk, 634003, Russia)
P. V. Dzyuba (Tomsk State University of Architecture and Civil Engineering, Solyanaya pl. 2, Tomsk, 634003, Russia)
O. V. Kabantsev (Tomsk State University of Architecture and Civil Engineering, Solyanaya pl. 2, Tomsk, 634003, Russia)
D. G. Kopanitsa (Tomsk State University of Architecture and Civil Engineering, Solyanaya pl. 2, Tomsk, 634003, Russia)
A. A. Yugov (Tomsk State University of Architecture and Civil Engineering, Solyanaya pl. 2, Tomsk, 634003, Russia, YugAlex@mail.ru)
N. T. Yugov (Tomsk State University of Control Systems and Radioelectronics, Lenina 40, Tomsk, 634050, Russia)
Abstract We solve the problem on the collision of steel cylindrical hammers in the velocity range up to 800 m/s with rectilinear concrete slabs. We consider the following two approaches to calculating concrete fracture under impact loading: the phenomenological approach in which the strength criteria are expressed in terms of invariant constraints imposed on the critical macrocharacteristics of the process, i.e., stresses and strains, and the approach in which the fracture is considered as the process of formation, growth, and confluence of microdefects under the action of applied stresses. We compare the results of mathematical modeling with the experimental data concerning the penetration depth and the exterior flushing value. In the framework of the proposed model of dynamic fracture in concrete, we calculate the strength of a concrete tetrahedral prism under the action of longitudinal loads. We obtain a satisfactory agreement of the results of mathematical modeling with experimental results.
References
1.  N. N. Belov, D. G. Kopanitsa, O. K. Kumpyak, and N. T. Yugov, Calculation of Reinforced-Concrete Structures under Explosive and Impact Loading (STT, Tomsk, 2004) [in Russian].
2.  N. N. Belov, N. T. Yugov, S. A. Afanasieva, et al., "Processes of Deforming and Fracture of Brittle Materials," Mekh. Kompos. Mat. Konstr. 7 (2), 131-142 (2001).
3.  N. N. Belov, N. T. Yugov, D. G. Kopanitsa, et al., "Study of Dynamic Fracture Processes in Fine-Grained Concrete by the Method of Computer Modeling," Vestnik TGASU, No. 1, 14-19 (2001).
4.  S. A. Afanas'eva, N. N. Belov, and N. T. Yugov, "The Penetration of Cylindrical Strikes through Obstacles Made of Concrete and Sandy Ground," Dokl. Akad. Nauk 387 (5), 624-626 (2002) [Dokl. Phys. (Engl. Transl.) 47 (12), 876-879 (2002)].
5.  N. N. Belov, N. T. Yugov, S. A. Afanas'eva, et al., "Penetration of Steel Hammers into Barriers Made of Concrete and Sand Ground," Vestnik TGASU, No. 1, 5-12 (2003).
6.  N. N. Belov, N. T. Yugov, D. G. Kopanitsa, et al., "Computation of Strength of Ferroconcrete Slabs in High-Speed Impact," Vestnik TGASU, No. 1, 71-80 (2004).
7.  G. A. Geniev and V. N. Kissyuk, "To the Problem of Generalization of the Theory of Concrete Strength," Beton Zhelezobeton, No. 2, 16-29 (1965).
8.  N. N. Belov, V. N. Demidov, L. V. Efremova, et al., "Computer Modeling of the Dynamics of High-Velocity Impact and Accompanying Physical Phenomena," Izv. Vyssh. Uchebn. Zaved. Fiz., No. 8, 5-48 (1992) [Russ. Phys. J. (Engl. Transl.) 35 (8), 690-723 (1992)].
9.  N. N. Belov, Yu. A. Biryukov, A. T. Roslyak, et al., "Mechanism of the Crushing of Particles for Production of Submicron Powders of Refractory Compounds in a Pneumatic Circulation Apparatus," Dokl. Akad. Nauk 397 (3), 337-341 (2004) [Dokl. Phys. (Engl. Transl.) 49 (7), 436-439 (2004)].
10.  S. A. Afanas'eva, N. N. Belov, V. F. Tolkachev, et al., "Specific Features of Shock-Wave Deformation of Al2O3 Porous Ceramics," Dokl. Akad. Nauk 368 (4), 477-479 (1999) [Dokl. Phys. (Engl. Transl.) 44 (10), 683-685 (1999)].
11.  L. Seaman, D. R. Gurran, and D. A. Shockey, "Computational Models for Ductile and Brittle Fracture," J. Appl. Phys. 47 (11), 4814-4826 (1976).
12.  R. L. Salganik, "Mechanics of Bodies with Many Cracks," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 4, 149-158 (1973) [Mech. Solids (Engl. Transl.) 8 (4) 135-143 (1973)].
13.  A. L. Isaev, "Influence of Concrete Reinforcement on the Results of Dynamic Loading by Penetrating Bodies," in Extremal State of Material. Detonation. Shock Waves. Proc. Int. Conf. "III Kharitonov Scientific Readings" (VNIIEF, Sarov, 2002), pp. 150-156 [in Russian].
Received 21 April 2005
Link to Fulltext
<< Previous article | Volume 43, Issue 2 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100