| | Mechanics of Solids A Journal of Russian Academy of Sciences | | Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544 Online ISSN 1934-7936 |
Archive of Issues
Total articles in the database: | | 12949 |
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): | | 8096
|
In English (Mech. Solids): | | 4853 |
|
<< Previous article | Volume 43, Issue 2 / 2008 | Next article >> |
G. S. Leizerovich and N. A. Taranukha, "Nonobvious features of dynamics of circular cylindrical shells," Mech. Solids. 43 (2), 246-253 (2008) |
Year |
2008 |
Volume |
43 |
Number |
2 |
Pages |
246-253 |
DOI |
10.3103/S0025654408020106 |
Title |
Nonobvious features of dynamics of circular cylindrical shells |
Author(s) |
G. S. Leizerovich (Komsomolsk-on-Amur State Technical University, pr-t Lenina 27, Komsomolsk-on-Amur, 681013, Russia, yahad@kmscom.ru)
N. A. Taranukha (Komsomolsk-on-Amur State Technical University, pr-t Lenina 27, Komsomolsk-on-Amur, 681013, Russia, taranukha@knastu.ru) |
Abstract |
In the framework of the nonlinear theory of flexible shallow shells, we study free bending vibrations of a thin-walled circular cylindrical shell hinged at the end faces. The finite-dimensional shell model assumes that the excitation of large-amplitude bending vibrations inevitably results in the appearance of radial vibrations of the shell. The modal equations are obtained by the Bubnov-Galerkin method. The periodic solutions are found by the Krylov-Bogolyubov method. We show that if the tangential boundary conditions are satisfied “in the mean,” then, for a shell of finite length, significant errors arise in determining its nonlinear dynamic characteristics. We prove that small initial irregularities split the bending frequency spectrum, the basic frequency being smaller than in the case of an ideal shell. |
References |
1. | V. D. Kubenko and P. S. Koval'chuk,
"Nonlinear Problems of the Vibration of Thin Shells (Review),"
Prikl. Mekh.
34 (8), 3-31 (1998)
[Int. Appl. Mech. (Engl. Transl.)
34 (8), 703-728 (1998)]. |
2. | V. D. Kubenko, P. S. Koval'chuk, and T. S. Krasnopol'skaya,
Nonlinear Interaction of Bending Modes of Vibration of
Cylindrical Shells (Naukova Dumka, Kiev, 1984) [in Russian]. |
3. | T. K. Varadan, G. Prathap, and H. V. Ramani,
"Non-Linear Free Flexural Vibration of Thin Circular Cylindrical Shells,"
A. I. A. A. J. No. 27, 1303-1304 (1989)
[Aerokosmich. Tekhn. (Russ. Transl.),
No. 5, 21-24 (1990)]. |
4. | E. V. Ladygina and A. I. Manevich,
"Nonlinear Free Bending Vibrations of a Cylindrical Shell
with an Interaction of Conjugate Modes,"
Izv. Akad. Nauk. Mekh. Tverd. Tela,
No. 3, 169-175 (1997)
[Mech. Solids (Engl. Transl.)
32 (3), 141-146 (1997)]. |
5. | A. S. Vol'mir,
Nonlinear Dynamics of Plates and Shells
(Nauka, Moscow, 1972)
[in Russian]. |
6. | G. S. Leizerovich,
"Nonlinear Modes of Motion of Thin Circular Cylindrical Shells,"
Zh. Prikl. Mekh. Tekh. Fiz.,
No. 4, 161-164 (2001)
[J. Appl. Mech. Tech. Phys. (Engl. Transl.)
42 (4), 701-703 (2001)]. |
7. | D. A. Evensen,
"Nonlinear Flexural Vibrations of Thin Circular Rings,"
J. Appl. Mech. E
33 (3), 553-560 (1965). |
8. | N. A. Taranukha and G. S. Leizerovich, "Nonlinear Free Bending
Vibrations of Thin Circular Cylindrical Shells," DVO RAN.
Dal'nevost. Mat. Zh., No. 1, 102-110 (2000). |
9. | N. A. Taranukha and G. S. Leizerovich, "On the Influence of
Initial Irregularities on the Natural Bending Vibrations of Thin
Circular Cylindrical Shells," Izv. Vyssh. Uchebn. Zaved.
Stroitelstvo, No. 1, 25-28 (2001). |
10. | N. A. Taranukha and G. S. Leizerovich,
"Effect of Initial Imperfections on the Flexural
Eigenvibrations of Cylindrical Shells,"
Zh. Prikl. Mekh. Tekh. Fiz.,
No. 2, 180-187 (2001)
[J. Appl. Mech. Tech. Phys. (Engl. Transl.)
42 (2), 345-351 (2001)]. |
11. | N. A. Taranukha and G. S. Leizerovich,
Dynamics of "Irregular" Shells
(Dal'nauka, Vladivostok, 2005)
[in Russian]. |
|
Received |
24 June 2005 |
Link to Fulltext |
|
<< Previous article | Volume 43, Issue 2 / 2008 | Next article >> |
|
If you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter
|
|