Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2008-2pp.225-231

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 43, Issue 2 / 2008 | Next article >>
A. D. Panov, "Variation in the length of perfectly elastic rods under torsion," Mech. Solids. 43 (2), 225-231 (2008)
Year 2008 Volume 43 Number 2 Pages 225-231
DOI 10.3103/S0025654408020076
Title Variation in the length of perfectly elastic rods under torsion
Author(s) A. D. Panov (Kosygin Moscow State Textile University, Malaya Kaluzhskaya 1, GSP-1, Moscow, 119071, Russia, pim-07@mail.ru)
Abstract On the basis of elastic constitutive relations that reflect geometrically nonlinear second-order effects, we refine the theory of torsion of rectilinear rods of an arbitrary transverse cross-section. In particular, we obtain a universal formula, independent of the material properties, that determines the longitudinal strain arising as the rod undergoes free torsion. According to this formula, the length of a rod made of an isotropic perfectly elastic material can, in contrast to the traditional concepts, either increase or decrease as the rod undergoes torsion. Moreover, the variation in the length depends only on the geometry of the transverse cross-section.
References
1.  S. P. Timoshenko and J. N. Goodyear, Theory of Elasticity (McGraw-Hill, New York, 1951; Nauka, Moscow, 1975).
2.  A. D. Panov, "Nonlinear Effects in Axially Symmetric Deformation of a Cylinder. Pointing Effect," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 27-43 (2004) [Mech. Solids (Engl. Transl.) 39 (5), 21-34 (2004)].
3.  D. V. Georgievskii, "Tensor Nonlinear Effects under Isothermal Strain of Continua," Uspekhi Mekh. 1 (2), 150-176 (2002).
4.  A. D. Panov, "Theory of Constitutive Relations for Isotropic Solids," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 27-44 (2004) [Mech. Solids (Engl. Transl.) 39 (6), 20-32 (2004)].
5.  S. P. Demidov, Theory of Elasticity (Vysshaya Shkola, Moscow, 1979) [in Russian].
6.  A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
7.  A. D. Panov, Theory of Deformation of an Isotropic Solid under Finite Strains (New Method for Determining the State Law) (Izd. MGTA im. Kosygina, Moscow, 1998) [in Russian].
8.  I. A. Birger and R. R. Mavlyutov, Strength of Materials. Tutorial (Nauka, Moscow, 1986) [in Russian].
Received 21 February 2006
Link to Fulltext
<< Previous article | Volume 43, Issue 2 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100