Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences

Archive of Issues

Total articles in the database: 9198
In Russian (. . ): 6504
In English (Mech. Solids): 2694

<< Previous article | Volume 43, Issue 1 / 2008 | Next article >>
L. D. Akulenko and S. V. Nesterov, "Elastic properties of a fluid-saturated granular medium," Mech. Solids. 43 (1), 1-12 (2008)
Year 2008 Volume 43 Number 1 Pages 1-12
DOI 10.3103/S0025654408010019
Title Elastic properties of a fluid-saturated granular medium
Author(s) L. D. Akulenko (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, bolotnik@ipmnet.ru)
S. V. Nesterov (Institute for Problems in Mechanics, Russian Academy of Sciences, pr-t Vernadskogo 101, str. 1, Moscow, 119526, Russia, kumak@ipmnet.ru)
Abstract We present a theoretical constructive model describing the elastic properties of a liquid-saturated granular medium with the external pressure taken into account. This model permits calculating the bulk and shear moduli, the speed of sound, the natural frequencies, and the mode shapes of acoustic pressure and vibrational velocity. The desired fundamental characteristics are determined in terms of the medium structure parameters, which is important in geophysical and technical applications. We show that the speed of sound polynomially depends on the pressure in loose media. This dependence was confirmed by numerical laboratory experiments in a wide range of pressure measurements and of the working space geometry. We separately study the case of pressure caused by the weight of the upper layers of the medium (ground). We establish some qualitative mechanical effects concerning the dependence of the elastic properties on various parameters of the medium.
References
1.  N. B. Dortman (Editor), Physical Properties of Rocks and Minerals (Nedra, Moscow, 1984) [in Russian].
2.  V. V. Rzhevskii and G. Ya. Novik, Foundations of Rock Physics (Nedra, Moscow, 1967) [in Russian].
3.  Ya. I. Frenkel, "On the Theory of Seismic and Seismoelectric Phenomena in Moist Soil," Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 8(4), 133-150 (1944) [J. Phys. 8 (4), 230-241 (1944)].
4.  M. A. Biot, "Theory of Propagation of Elastic Waves in Fluid-Saturated Porous Solids," JASA 28, 168-191 (1956).
5.  V. S. Nesterov, "Visco-Inertial Dispersion and Sound Decay in Highly-Concentrated Suspensions," Akust. Zh. 5(3), 337-344 (1959) [Acoust. Phys. (Engl. Transl.)].
6.  L. D. Akulenko and S. V. Nesterov, "Investigation of Inertial and Elastic Properties of Granulated Media Impregnated with a Liquid by a Resonance Method" Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 145-156 (2002) [Mech. Solids (Engl. Transl.) 37 (5), 122-131 (2002)].
7.  L. D. Akulenko and S. V. Nesterov, "Inertial and Dissipative Properties of a Porous Medium Saturated with Viscous Fluid," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 109-119 (2005) [Mech. Solids (Engl. Transl.) 40 (1), 90-98 (2005)].
8.  G. Hara, "Theorie der Akustischen Schwingungsausbreitung in Gekörnten Substanzen und Experinmentelle Untersuchungen an Kohlepulver," Elektische Nachrichten Technik 12(7), 191-200 (1935).
9.  E. Kamke, Handbook on Ordinary Differential Equations (Nauka, Moscow, 1971) [in Russian].
Received 21 March 2007
Link to Fulltext http://www.springerlink.com/content/e430788pnr5112wr
<< Previous article | Volume 43, Issue 1 / 2008 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100