Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2007-6pp.871-882

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 42, Issue 6 / 2007 | Next article >>
D. V. Balandin and M. M. Kogan, "Optimal output feedback stabilization," Mech. Solids. 42 (6), 871-882 (2007)
Year 2007 Volume 42 Number 6 Pages 871-882
Title Optimal output feedback stabilization
Author(s) D. V. Balandin (Lobachesvskii Nizhnii Novgorod State University, pr-t Gagarina 23, Nizhnii Novgorod, 603950, Russia, balandin@pmk.unn.runnet.ru)
M. M. Kogan (Nizhnii Novgorod State Architectural and Civil Engineering University, Ilinskaya 65, Nizhnii Novgorod, 603950, Russia, mkogan@nngasu.ru)
Abstract We show that optimal stabilization of a linear dynamic plant can be implemented on the basis of the solution of linear matrix inequalities even if the plant state cannot be measured. By way of example, we obtain optimal control laws for a double inverted pendulum assuming that only the lower link deflection angle is measured.
References
1.  R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969; Mir, Moscow, 1971).
2.  H. Kvakernaak and R. Sivan, Linear Optimal Control Systems (Wiley, New York, 1972; Mir, Moscow, 1977).
3.  Yu. N. Andreev, Control of Finite-Dimensional Linear Objects (Nauka, Moscow, 1976).
4.  D. V. Balandin and M. M. Kogan, Synthesis of Control Laws on the Basis of Linear Matrix Inequalities (Fizmatlit, Moscow, 2007).
5.  P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, The LMI Control Toolbox. For Use with Matlab (The MathWorks Inc., Philadelphia, 1995).
6.  R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985; Mir, Moscow, 1989).
7.  P. Gahinet and P. Apkarian, "A Linear Matrix Inequality Approach to H Control," Intern. J. Robust Nonlinear Control 4, 421-448 (1994).
8.  D. V. Balandin and M. M. Kogan, "Synthesis of Controllers on the Basis of a Solution of Linear Matrix Inequalities and a Search Algorithm for Reciprocal Matrices," Avtomatika i Telemekhanika, No. 1, 82-99 (2005) [Automation and Remote Control (Engl. Transl.) 66 (1), 74-91 (2005)].
9.  D. V. Balandin and M. M. Kogan, "Optimal Perturbation Damping in Linear Controlled Systems," Differents. Uravn. 41 (11), 1475-1481 (2005) [Differ. Equations (Engl. Transl.) 41 (11), 1550-1556 (2005)].
Received 20 January 2007
Link to Fulltext http://www.springerlink.com/content/tv7985l272403132
<< Previous article | Volume 42, Issue 6 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100