Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IPMech RASWeb hosting is provided
by the Ishlinsky Institute for
Problems in Mechanics
of the Russian
Academy of Sciences
IssuesArchive of Issues2007-6pp.860-870

Archive of Issues

Total articles in the database: 9179
In Russian (. . ): 6485
In English (Mech. Solids): 2694

<< Previous article | Volume 42, Issue 6 / 2007 | Next article >>
E. E. Lisenkova, "Motion of an object along a one-dimensional guide under elastic wave radiation reaction," Mech. Solids. 42 (6), 860-870 (2007)
Year 2007 Volume 42 Number 6 Pages 860-870
Title Motion of an object along a one-dimensional guide under elastic wave radiation reaction
Author(s) E. E. Lisenkova (Nizhnii Novgorod Branch of Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, Belinskogo 85, Nizhnii Novgorod, 603024, Russia, wvs@dynamo.nnov.ru)
Abstract We consider nonseparated motion of an object along a one-dimensional elastic guide (a beam or a string) under the radiated wave pressure. Conditions on the parameters of the vibration sources acting on the object and providing directional radiation are obtained. Using the exact solutions obtained under the assumption that the law of motion is uniform, we study the dependencies of the motive force and the vibration-source-to-object-translational-motion energy conversion factor (efficiency) on the body velocity. It is shown that an object moving at a supercritical velocity for the case in which only a single wave is excited to the left of it must be distributed; i.e., its dimensions must be comparable with the radiated wave length. In this case, the efficiency can be arbitrarily close to unity.
References
1.  S. V. Krysov and V. V. Kholuev, "Forces of Resistance to Motion of Variables Loads over Railway," Mashinovedenie, No. 1, 91-94 (1988).
2.  A. I. Vesnitskii, "Wave Effects in Elastic Systems," in Wave Dynamics of Machines (Nauka, Moscow, 1991), pp. 15-30 [in Russian].
3.  V. P. Boldin, A. I. Vesnitskii, and E. E. Lisenkova, "Elementary Wave Engine," Dokl. Ross. Akad. Nauk 318 (4), 849-852 (1991) [Sov. Phys. Dokl. (Engl. Transl.) 36 (6), 443-445 (1991)].
4.  A. I. Vesnitskii, N. D. Romanov, and G. A. Utkin, "Efficiency of a Wave Motor," Dokl. Akad. Nauk SSSR 308 (4), 810-811 (1989) [Sov. Phys. Dokl. (Engl. Transl.) 34 (10), 890 (1989)].
5.  V. P. Vetchinkin and N. N. Polyakhov, Theory and Design of Air Propeller (Oborongiz, Moscow, 1940) [in Russian].
6.  V. I. Dudakov, Methods for Solving Ill-Posed Problems (Oborongiz, Moscow-Leningrad, 1938) [in Russian].
7.  A. I. Vesnitskii, L. E. Kaplan, and G. A. Utkin, "The Laws of Variation of Energy and Momentum for One-Dimensional Systems with Moving Mountings and Loads," Prikl. Mat. Mekh. 47 (5), 863-866 (1983) [J. Appl. Math. Mech. (Engl. Transl.)].
8.  A. I. Vesnitskii, Waves in Systems with Moving Boundaries and Loads (Nauka, Fizmatlit, Moscow, 2001) [in Russian].
9.  A. V. Metrikine, "The Anomalous Doppler Effect and the Instability of the Transverse Vibrations of a Body Moving along an Elastic Track," Akust. Zh. 40 (1), 99-103 (1994).
10.  G. G. Denisov, E. K. Kugusheva, and V. V. Novikov, "On the Problem of the Stability of One-Dimensional Unbounded Elastic Systems," Prikl. Mat. Mekh. 49 (4), 691-696 (1985) [J. Appl. Math. Mech. (Engl. Transl.) 49 (4), 533-537 (1985)].
Received 20 January 2007
Link to Fulltext http://www.springerlink.com/content/a4wq6q207548737w
<< Previous article | Volume 42, Issue 6 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Branch of Power Industry, Machine Building, Mechanics and Control Processes of RAS, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100