Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-5pp.823-840

Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 42, Issue 5 / 2007 | Next article >>
E. N. Vilchevskaya and A. B. Freidin, "On phase transitions in a domain of material inhomogeneity. I. Phase transitions of an inclusions in a homogeneous external field," Mech. Solids. 42 (5), 823-840 (2007)
Year 2007 Volume 42 Number 5 Pages 823-840
Title On phase transitions in a domain of material inhomogeneity. I. Phase transitions of an inclusions in a homogeneous external field
Author(s) E. N. Vilchevskaya (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol’shoy pr-t 61, St. Petersburg, 199178, Russia, ven@itcwin.com)
A. B. Freidin (Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Bol’shoy pr-t 61, St. Petersburg, 199178, Russia, freidin@mechanics.ipme.ru)
Abstract We pose and study the problem on an inclusion experiencing a phase transition in a homogeneous external stress field transferred by a matrix. The matrix is formed by a linear-elastic material. The inclusion material admits phase transitions under strain, and the passage from one phase state into another, as well as two-phase states, is determined by the energy preference considerations and the possible existence of two-phase states. For the simplest problem we consider the problem of phase transitions in a cylindrical inclusion under homogeneous plane strain conditions. In the space of strains, we construct the domains of existence of the inclusion one-phase states and the switching surfaces between the one-phase states. We study the possibility of the inclusion two-phase states, prove the characteristic properties of axisymmetric two-phase strains, and examine their stability. We also demonstrate the scale effect, namely, the influence of the relative dimensions of the inclusion and the body on the inclusion phase state. In the second part of the paper, we study the interaction between an inclusion experiencing phase transitions and a crack.
References
1.  V. S. Boiko, R. I. Garber, and A. M. Kosevich, Reversible Plasticity in Crystals (Nauka, Moscow, 1991) [in Russian].
2.  E. N. Vilchevskaya and A. B. Freidin, "On the Phase Transformations of an Inclusion in an External Strain Field," in Proc. XXXII Summer School APM-2004, St. Petersburg (IPME RAS, 2004), pp. 447-454.
3.  A. B. Freidin, "Small Strain Approximation in the Theory of Phase Transitions under Strain of Elastic Bodies," in Strength and Failure of Materials and Constructions. Intervuz. Collection of Papers, Vol. 18, Studies in Elasticity and Plasticity, Ed. by N. F. Morozov (Izd-vo St. Petersburg Univ., St. Petersburg, 1999), pp. 266-290 [in Russian].
4.  N. F. Morozov, I. R. Nazyrov, and A. B. Freidin, "One-Dimensional Problem on Phase Transformation of an Elastic Sphere," Dokl. Ross. Akad. Nauk 346 (2), 188-191 (1996) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
5.  I. R. Nazyrov and A. B. Freidin, "Phase Transformations in Deformation of Solids in a Model Problem of an Elastic Ball," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 52-71 (1998) [Mech. Solids (Engl. Transl.)].
6.  N. F. Morozov and A. B. Freidin, "Phase Transition Zones and Phase Transformations of Elastic Solids under Different Stress State," Trudy Mat. Inst. Steklov 223, 220-232 (1998) [Proc. Steklov Inst. Math. (Engl. Transl.)].
7.  M. A. Grinfeld, "On Conditions of Thermodynamic Equilibrium of Phases of a Nonlinearly Elastic Material," Dokl. Akad. Nauk SSSR 251 (4), 824-827 (1980) [Soviet Math. Dokl. (Engl. Transl.)].
8.  R. D. James, "Finite Deformations by Mechanical Twinning," Arch. Rat. Mech. Analysis 77, 143-177 (1981).
9.  L. M. Truskinovskii, "Equilibrium Interfaces between Phases," Dokl. Akad. Nauk SSSR 265 (2), 306-310 (1982) [Soviet Math. Dokl. (Engl. Transl.)].
10.  V. I. Kondaurov and L. V. Nikitin, "On Phase Transitions of First Kind in Nonlinearly Elastic Media," Dokl. Akad. Nauk SSSR 262 (6), 1348-1351 (1982) [Soviet Math. Dokl. (Engl. Transl.)].
11.  M. E. Gurtin, "Two-Phase Deformations of Elastic Solids," Arch. Rat. Mech. Analysis 84 (1), 1-29 (1983).
12.  R. Fosdick and B. Hertog, "The Maxwell Relation and Eshelby's Conservation Law for Minimizers in Elasticity Theory," J. Elasticity 22, 193-200 (1989).
13.  M. A. Grinfeld, Methods of Continuum Mechanics in the Theory of Phase Transformations (Nauka, Moscow, 1990) [in Russian].
14.  V. A. Eremeev and L. M. Zubov, "PPhase-Equilibrium Conditions in Nonlinear-Elastic Media with Microstructure," Dokl. Ross. Akad. Nauk 322 (6), 1052-1056 (1992) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
15.  A. B. Freidin and A. M. Chiskis, "Phase Transition Zones in Nonlinearly Elastic Isotropic Materials. Part 1. Basic Relations," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 91-109 (1994) [Mech. Solids (Engl. Transl.)].
16.  V. G. Osmolovskii, Variational Problem of Phase Transitions in Continuum Mechanics (Izd-vo St. Petersburg Univ., St. Petersburg, 2000) [in Russian].
17.  A. B. Freidin, "On Phase Equilibrium of an Isotropic Nonlinearly Elastic Material," in Nonlinear Problems of Continuum Mechanics, Izv. Vyssh. Uchebn. Zaved, Natural Sciences, Special Issue, 150-168 (2000).
18.  A. A. Vakulenko, "On Micro and Macro Kinetics of Martensitic Transformations," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 43-62 (2001) [Mech. Solids (Engl. Transl.)].
19.  A. B. Freidin, E. N. Vilchevskaya, and L. L. Sharipova, "Two-Phase Deformations within the Framework of Phase Transitions Zones," Theoret. and Appl. Mech. 28-29, 149-172 (2002).
20.  A. B. Freidin, "On New Phase Inclusions in Elastic Solids," ZAMM 87 (2), 102-116 (2007).
21.  V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, "On the Stability of Two-Phase Equilibrium Elastic Bodies," Prikl. Mat. Mekh. 71 (1), 66-92 (2007) [J. Appl. Math. Mech. (Engl. Transl.)].
22.  V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, "Nonuniqueness and Stability in Problems of Equilibrium of Elastic Two-Phase Bodies," Dokl. Ross. Akad. Nauk 391 (2), 189-193 (2003) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
23.  V. A. Eremeev, A. B. Freidin, and L. L. Sharipova, "On Centrally Symmetric Two-Phase Strain Fields," in Problems of Mechanical Strains of Solids, Intervuz. Collection of Papers Dedicated to Academician N. F. Morozov on the Occasion of His 70th Birthday (Izd-vo St. Petersburg Univ., St. Petersburg, 2002), pp. 111-122 [in Russian].
24.  A. B. Freidin, "HHeterogeneous Deformation of Elastic Solids due to Multiple Appearance of New Phase Layers," in Scientific Proc. of Intern. V. A. Likhachev Seminar "Actual Problems of Strength" (Novgorod, 1997), Vol. 1, Part 2, pp. 236-240.
25.  A. B. Freidin and L. L. Sharipova, "On a Model of Heterogenous Deformation of Elastic Bodies by the Mechanism of Multiple Appearance of New Phase Layers," Meccanica - J. Ital. Assoc. Theoret. Appl. Mech. 41, 321-339 (2006).
26.  E. N. Vilchevskaya and A. B. Freidin, "Multiple Appearances of Ellipsoidal Nuclei of New Phase," Dokl. Ross. Akad. Nauk 411 (6), 770-774 (2006) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
27.  A. B. Freidin, Y. B. Fu, L. L. Sharipova, and E. N. Vilchevskaya, "Spherically Symmetric Two-Phase Deformations and Phase Transition Zones," Int. J. Solids and Struct. 43, 4484-4508 (2006).
28.  T. Mura, Micromechanics of Defects in Solids (Kluwer Academic, Dordrecht, 1987).
29.  L. B. Kublanov and A. B. Freidin, "Solid Phase Seeds in a Deformable Material," Prikl. Mat. Mekh. 52 (3), 493-501 (1988) [J. Appl. Math. Mech. (Engl. Transl.)].
30.  I. A. Kunin, "Elastic Media with Microstructure. II. Three-Dimensional Models," in Ser. Solid State Sci. (Springer-Verlag, Berlin, 1983), Vol. 44.
31.  S. K. Kanaun and V. M. Levin, Efficient Field Method in Mechanics of Composite Materials (Izd-vo Petrozav. Univ., Petrozavodsk, 1993) [in Russian].
32.  J. D. Eshelby, "The Determination of the Elastic Field on an Ellipsoidal Inclusion and Related Problems," Proc. Roy. Soc. London. Ser. A 241, 376-396 (1957).
33.  M. Milgrom and S. Shtrirkman, "The Energy of Inclusions in Linear Media Exact Shape-Independent Relations," J. Mech. Phys. Solids 40 (5), 927-937 (1992).
34.  A. B. Freidin, "Silver Cracks and Shear Strips in Glasslike Polymers as New Phase Layers," Mekh. Komp. Mater., No. 1, 3-10 (1989).
Link to Fulltext
<< Previous article | Volume 42, Issue 5 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100