Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-5pp.700-709

Archive of Issues

Total articles in the database: 12895
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8084
In English (Mech. Solids): 4811

<< Previous article | Volume 42, Issue 5 / 2007 | Next article >>
V. A. Babeshko, S. V. Ratner, and P. V. Syromyatnikov, "Anisotropic bodies with inhomogeneities: The case of a set of cracks," Mech. Solids. 42 (5), 700-709 (2007)
Year 2007 Volume 42 Number 5 Pages 700-709
Title Anisotropic bodies with inhomogeneities: The case of a set of cracks
Author(s) V. A. Babeshko (Kuban State University, Stavropol’skaya 149, Krasnodar, 350040, Russia, rector@kubsu.ru)
S. V. Ratner (South Scientific Centre, Russian Academy of Sciences, Chekhova 41, Rostov-on-Don, 344006, Russia, lanarat@mail.ru)
P. V. Syromyatnikov (South Scientific Centre, Russian Academy of Sciences, Chekhova 41, Rostov-on-Don, 344006, Russia, syromyatnikov@math.kubsu.ru)
Abstract We use the Betti theorem to obtain the integral equations of the dynamic theory of elasticity for a multilayer convex body with an arbitrary elastic anisotropy of layers containing plane infinitely thin cracks. The systems of integral equations relate the displacement jumps to the stresses on the crack lips and are stated numerically in terms of Fourier transforms. For the case of plane-parallel layers with a set of plane cracks on the interfaces between the layers, we propose a simple numerical-analytic method for constructing the Fourier symbol, i.e., the matrix of the kernel of the system of integral equations. The method is stable for an arbitrary combination of continuous and discontinuous conditions on the layer boundaries. Numerical examples are given for a packet of four heterogeneous anisotropic layers.
References
1.  V. A. Babeshko, "Bodies with Inhomogeneities; the Case of Sets of Cracks," Dokl. Ross. Akad. Nauk 373 (2), 191-193 (2000) [Russian Acad. Sci. Dokl. Math. (Engl. transl.)].
2.  V. A. Babeshko, A. V. Pavlova, S. V. Ratner, and R. Williams, "Solution to the Problem on Vibration of an Elastic Solid with Inner Cavities," Dokl. Ross. Akad. Nauk 382 (5), 625-628 (2002) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
3.  V. A. Babeshko and O. M. Babeshko, "Factorization Method in the Theory of Vibration Strength Viruses," Dokl. Ross. Akad. Nauk 393 (4), 473-477 (2003) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
4.  V. A. Babeshko and O. M. Babeshko, "Study of Boundary Value Problems by Double Factorization," Dokl. Ross. Akad. Nauk 403 (1), 20-24 (2005) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
5.  V. A. Babeshko and O. M. Babeshko, "Integral Transforms and Factorization Method for Boundary Problems," Dokl. Ross. Akad. Nauk 403 (6), 748-751 (2005) [Russian Acad. Sci. Dokl. Math. (Engl. Transl.)].
6.  W. Nowacki, Electromagnetic Effects in Solids (PWN, Warsaw, 1983; Mir, Moscow, 1986).
7.  O. D. Pryakhina and A. V. Smirnova, "An Efficient Method for Solving Dynamic Problems for Laminated Media with Discontinuous Boundary Conditions," Prikl. Mat. Mekh. 68 (3), 500-507 (2004) [J. Appl. Math. Mech. (Engl. Transl.)].
8.  V. M. Alexandrov, B. I. Smetanin, and B. V. Sobol', Thin Stress Concentrators in Elastic Bodies (Nauka, Moscow, 1993) [in Russian].
9.  V. A. Babeshko, E. V. Glushkov, and Zh. F. Zinchenko, Dynamics of Inhomogeneous Linearly Elastic Media (Nauka, Moscow, 1989) [in Russian].
10.  V. A. Babeshko and P. V. Syromyatnikov, "A Method for the Construction of the Fourier Symbol of the Green Matrix for Multi-Layered Electroelastic Half-Space," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 35-47 (2002) [Mech. Solids (Engl. Transl.)].
11.  M. P. Shaskol'skaya (Editor), Acoustic Crystals: Handbook (Nauka, Moscow, 1982) [in Russian].
12.  I. Zelenka, Piezoelectric Resonators on Volume and Surface Acoustic Waves (Mir, Moscow, 1990) [in Russian].
Received 26 May 2005
Link to Fulltext
<< Previous article | Volume 42, Issue 5 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100