Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-2pp.271-282

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
M. Yu. Gutkin and I. A. Ovid’ko, "Dislocation loop nucleation and plastic deformation of nanocrystalline materials," Mech. Solids. 42 (2), 271-282 (2007)
Year 2007 Volume 42 Number 2 Pages 271-282
Title Dislocation loop nucleation and plastic deformation of nanocrystalline materials
Author(s) M. Yu. Gutkin (Institute for Problems in Engineering Sciences, Russian Academy of Sciences, Bol’shoy pr-t 61, St. Petersburg, 199178, Russia, gutkin@def.ipme.ru)
I. A. Ovid’ko (Institute for Problems in Engineering Sciences, Russian Academy of Sciences, Bol’shoy pr-t 61, St. Petersburg, 199178, Russia, ovidko@def.ipme.ru)
Abstract We propose a three-dimensional model of plastic deformation of a mechanically loaded nanocrystalline material by means of heterogeneous nucleation of loops of complete and partial lattice dislocations and by means of grain boundary dislocations on the already formed dislocation loops. We calculate and compare the energy variations characterizing various versions of dislocation loop nucleation. We discover three basic regions of variation of nanocrystalline material grain dimensions which are characterized by their own types of loop nucleation. We also study the role played by loop nucleation in plastic and superplastic deformations of nanocrystalline materials.
References
1.  M. Yu. Gutkin and I. A. Ovid'ko, "Yield Strength and Plastic Deformation of Nanocrystalline Materials," Uspekhi Mekhaniki 2 (1), 68-125 (2003).
2.  M. Yu. Gutkin and I. A. Ovid'ko, Physical Mechanics of Deformable Nanostructures. Vol. 1: Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].
3.  M. Yu. Gutkin and I. A. Ovid'ko, Plastic Deformation in Nanocrystalline Materials (Springer, Berlin, 2004).
4.  I. Ovid'ko, C. S. Pande, R. Krishnamoorti, E. Lavernia, and G. Skandan, Editors, Properties of Nanostructured Materials and Nanocoposites (MRS Symp. Proc., Warrendale, 2004), Vol. 791.
5.  H. Hahn and K. A. Padmanabhan, "A Model for the Deformation of Nanocrystalline Materials," Philos. Mag. B 76 (4), 559-571 (1997).
6.  D. A. Konstantinidis and E. C. Aifantis, "On the "Anomalous" Hardness of Nanoncrytalline Materials," Nanostruct. Maters. 10 (7), 1111-1118 (1998).
7.  A. K. Mikherjee, "An Examination of the Constitutive Equation for Temperature Plasticity," Mater. Sci. Eng. A 322, 1-22 (2002).
8.  M. Yu. Gutkin, I. A. Ovid'ko, and N. V. Skiba, "Strengthening Mechanism for High-Strain-Rate Superplasticity in Nanoncrytalline Materials," J. Phys. D: Appl. Phys. 36 (12), L47-L5 (2003).
9.  M. Yu. Gutkin, I. A. Ovid'ko, and C. S. Pande, "Yiels Stress of Nanoncrytalline Materials: Role of Grain Boundary Dislocations, Triple Junctions and Coble Creep," Phil. Mag. 84 (9), 847-863 (2004).
10.  M. Yu. Gutkin, I. A. Ovid'ko, and N. V. Skiba, "Strengthening and Softening Mechanisms in Nanoncrytalline Materials under Superplastic Deformation," Acta Mater. 52 (6), 1711-1720 (2004).
11.  R. A. Masumura, P. M. Hazzkedine, and C. S. Pande, "Yield Stress of Fine Grained Materials," Acta Mater. 46 (13), 4527-4534 (1998).
12.  H. S. Kim, Y. Esterin, and M. B. Bush, "Plastic Deformation Behavior of Fine-Grained Materials," Acta Mater. 48 (2), 493-504 (2000).
13.  V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, "Grain-Boundary Diffusion Creep in Nanoncrytalline Palladium by Molecular-Dynamics Simulation," Acta Mater. 50 (1), 61-73 (2002).
14.  A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid'ko, "Triple Junction and Plastic Flow in Fine-Grained Materials," Scr. Mater. 47 (1), 51-55 (2002).
15.  A. A. Fedorov, M. Yu. Gutkin, and I. A. Ovid'ko, "Transformation of Grain Boundary Dislocaton Pile-Ups in Nano- and Polycrystalline Materials," Acta Mater. 51 (4), 887-898 (2003).
16.  M. Ke, S. A. Hackney, W. W. Milligan, and E. C. Aifantis, "Observation and Measurement of Grain Rotation and Plastic Strain in Nanostructured Metal Thin Films," Nanostruct. Maters. 5 (6), 689-697 (1995).
17.  N. I. Noskova, "Physics of Deformations of Nanocrystalline Metals and Alloys," in Nanocrystalline Materials, Ed. by V. V. Ustinov and N. I. Noskova (UrO RAN, Ekaterinburg, 2002), pp. 159-170 [in Russian].
18.  M. Myryaama, J. M. Howe, H. Hidaka, and S. Takaki, "Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe," Science 295 (5564), 2433-2435 (2002).
19.  M. Yu. Gutkin, A. L. Kolesnikova, I. A. Ovid'ko, and N. V. Skiba, "Disclinations and Rotational Deformation in Fine-Grained Materials," Phil. Mag. Letters 82 (12), 651-657 (2002).
20.  I. A. Ovid'ko, "Deformation of Nanotstructures," Science 295, 2386 (2002).
21.  M. Yu. Gutkin, I. A. Ovid'ko, and N. V. Skiba, "Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials," Acta Mater. 51 (14), 4059-4071 (2003).
22.  M. Yu. Gutkin and I. A. Ovid'ko, "Disclinations and Rotational Deformation in Nanocrystalline Materials," Rev. Adv. Mater. Sci 4 (2), 79-113 (2003).
23.  E. Ma, "Watching the Nanograins Roll," Science 305, 623-624 (2004).
24.  Zh. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, and S. X. Mao, "Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel," Science 305, 654-657 (2004).
25.  M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. Wang, and X. Cheng, "Deformation Twinning in Nanoncrytalline Aluminum," Science 300 (5623), 1275-1277 (2003).
26.  X. Z. Liao, F. Zhou, E. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, "Deformation Mechanism in Nanocrystalline Al: Partial Dislocaiton Slip," Appl. Phys. Lett. 83 (4), 632-634 (2003).
27.  X. Z. Liao, F. Zhou, E. Lavernia, D. W. He, and Y. T. Zhu, "Deformation Twins in Nanocrystalline Al," Appl. Phys. Lett. 83 (24), 5062-5064 (2003).
28.  X. Z. Liao, F. Zhou, S. G. Srinivasan, Y. T. Zhu, R. Z. Valiev, and D. V. Gunderov, "Deformation Twinning in Nanocrystalline Copper at Room Temperature and Low Strain Rate," Appl. Phys. Lett. 84 (4), 592-594 (2004).
29.  S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhylyaev, and A. K. Mukherjee, "Low-Temperature Superplasticity in Nanostructured Nickel and Metal Alloys," Nature 398 (6729), 684-686 (1999).
30.  R. K. Islamgaliev, R. Z. Valiev, R. S. Mishra, and A. K. Mukherjee, "Enhanced Superplastic Properties in Bulk Metastable Nanostructured Alloys," Mater. Sci. Eng. A 304-306, 206-210 (2001).
31.  R. S. Mishra, R. Z. Valiev, S. X. McFadden, R. K. Islamgaliev, and A. K. Mukherjee, "High-Strain-Rate Superplasticity from Nanocrystalline Al alloy 1420 at Low Temperature," Phil. Mag. A. 81 (1), 37-48 (2001).
32.  R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, "Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation," J. Mater. Res. 17 (1), 5-8 (2002).
33.  R. Z. Valiev and T. G. Langdon, "An Investigation of the Role of Intragranular Dislocation Strain in the Superplastic Lead-62% tin Eutectic Alloy," Acta metall. 41 (3), 949-954 (1993).
34.  M. Yu. Gutkin, I. A. Ovid'ko, and N. V. Skiba, "Transformations of Grain Boundaries Due to Disclination Motion and Emission of Dislocation Pairs," Mater. Sci. Eng. A 339, 73-80 (2003).
35.  V. Bata and E. Perloma, "An Alternative Physical Explanation of the Hall-Petch Relation," Acta Mater. 52 (3), 657-665 (2004).
36.  S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid'ko "Decay of Low-Angle Tilt Boundaries in Deformed Nanocrystalline Materials," J. Phys. D: Appl. Phys. 37 (2), 269-272 (2004).
37.  M. Yu. Gutkin, I. A. Ovid'ko, and Yu. I. Meshcheryakov, "Mechanisms of Rotational Effect in Shock-Loaded Crystalline Metallic Materials," J. Physique III (France) 3 (8), 1563-1579 (1993).
38.  T. Mura, "The Continuum Theory of Dislocations," in Advances in Materials Research, Ed. by H. Herman (Interscience Publishers, New York-London-Sydney-Toronto, 1968), Vol. 3, pp. 1-108.
39.  T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, Dordrecht, 1987).
40.  M. Yu. Gutkin and A. G. Sheinerman, "Split and Sealing of Dislocated Pipers at the Front of a Growing Crystal," Phys. Stat. Sol. (B) 241 (8), 1810-1826 (2004).
41.  J. Hirt and I. Lothe, Theory of Dislocations (Atomizdat, Moscow, 1972) [in Russian].
42.  A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series: Elementary Functions (Nauka, Moscow, 1981) [in Russian].
43.  A. P. Sutton and R. W. Balluffi, Interfaces in Crystallinne Materials (Clarendon Press, Oxford, 1995).
44.  V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, "Length-Scale Effects in the Nucleation of Extended Lattice Dislocations in Nanocrystalline Al by Molecular-Dynamics Simulation," Acta Mater. 49 (14), 2713-2722 (2001).
45.  V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, "Dislocation Processes in the Deformation of Nanocrystalline Aluminum by Molecular-Dynamics Simulation," Nature Materials 1, 45-48 (2002).
46.  V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, "Deformation Twinning in Nanocrystalline Al by Molecular Dynamics Simulation," Acta Mater. 50, 5005-5020 (2002).
47.  H. Van Swygenhoven and P. M. Derlet, "Grain-Boundary Sliding in Nanocrystalline Fcc Metals," Phys. Rev. B 64 (22), paper 224105 (2001).
48.  P. M. Derlet and H. Van Swygenhoven, "Atomic Positional Disorder in Fcc Metal Nanocrystalline Grain Boundaries," Phys. Rev. B 67 (1), paper 014202 (2003).
Received 07 September 2004
Link to Fulltext
<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100