Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-2pp.250-259

Archive of Issues

Total articles in the database: 12854
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8044
In English (Mech. Solids): 4810

<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
I. S. Pavlov and A. I. Potapov, "Two-dimensional model of a granular medium," Mech. Solids. 42 (2), 250-259 (2007)
Year 2007 Volume 42 Number 2 Pages 250-259
Title Two-dimensional model of a granular medium
Author(s) I. S. Pavlov (Nizhnii Novgorod Branch of Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, Belinskogo 85, Nizhnii Novgorod, 603024, Russia)
A. I. Potapov (Nizhnii Novgorod Branch of Blagonravov Institute of Mechanical Engineering, Russian Academy of Sciences, Belinskogo 85, Nizhnii Novgorod, 603024, Russia, apotapov@sandy.ru)
Abstract A two-dimensional model of a granular medium is represented as a square lattice composed of elastically interacting round particles with translational and rotational degrees of freedom. In the long-wave approximation, we derive linear partial differential equations describing the propagation and interaction of waves of various types in such a medium. If microrotations of particles in the lattice and the related moment interactions are taken into account, then a microrotation wave (a spin wave) appears in the medium. We establish the one-to-one correspondence between the parameters of the microstructure and the elastic constants of second order. We analyze the dependence of the medium elasticity constants on the grain dimensions. In the continuum approximation, we compare the model proposed here with the model of two-dimensional Cosserat continuum.
References
1.  V. E. Panin, Editor, Physical Mesomechanics and Computer Simulation of Materials (Nauka, Novosibirsk, 1995) [in Russian].
2.  R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained by Intense Plastic Deformation (Logos, Moscow, 2000) [in Russian].
3.  A. I. Gusev and A. A. Rempel, Nanocrystal Materials (Fizmatlit, Moscow, 2001) [in Russian].
4.  I. A. Kunin, Theory of Elastic Media with Microstructure (Nauka, Moscow, 1975) [in Russian].
5.  J. Christoffersen, M. M. Mehrabadi, and S. A. Nemat-Nasser, "A Micromechanical Description of Granular Material Behavior," Trans. ASME J. Appl. Mech. 48 (2), 339-344 (1981).
6.  A. N. Bogdanov and A. T. Skvortsov, "Nonlinear Shear Waves in a Granular Medium," Akust. Zh. 38 (3), 408-412 (1992).
7.  C. S. Chang and L. Ma, "A Micromechanical-Based Micropolar Theory for Deformation of Granular Solids," Intern. J. Solids and Structure 28 (1), 67-87 (1994).
8.  J. Pouget, A. Askar, and G. A. Maugin, "Lattice Model for Elastic Ferroelectric Crystals: Microscopic Approach," Phys. Rev. B 33 (9), 6304-6325 (1986).
9.  O. V. Gendelman and L. I. Manevitch, "The Description of Polyethylene Crystal as a Continuum with Internal Degrees of Freedom," Intern. J. Solids and Structures 33 (12), 1781-1798 (1996).
10.  T. N. Dragunov, I. S. Pavlov, and A. I. Potapov, "Anharmonic Interaction of Elastic and Orientation Waves in One-Dimensional Crystals," Fizika Tverdogo Tela 39 (1), 137-144 (1997).
11.  S. A. Lisina, A. I. Potapov, and V. F. Nesterenko, "Nonlinear Granulated Medium with Particle Rotation. One-Dimensional Model," Akust. Zh. 47 (5), 685-693 (2001).
12.  M. Born and H. Kun, Dynamical Theory of Crystal Lattices (Izd-vo Inostr. Liter., Moscow, 1958) [in Russian].
13.  A. S. J. Suiker, A. V. Metrikine, and R. de Borst, "Comparison of Wave Propagation Characteristics of the Cosserat Continuum Model and Corresponding Discrete Lattice Models," Intern. J. Solids and Structures 38 (9), 1563-1583 (2001).
14.  A. I. Potapov, I. S. Pavlov, K. A. Gorshkov, and G. A. Maugin, "Nonlinear Interaction of Solitary Waves in a 2D Lattice," Wave Motion 34 (1), 83-95 (2001).
15.  V. Novatskii, Theory of Elasticity (Mir, Moscow, 1975) [in Russian].
16.  L. I. Sedov, Continuum Mechanics (Nauka, Moscow, 1970) [in Russian].
17.  A. M. Kosevich, Theory of Crystal Lattice (Physical Mechanics of Crystals) (Vishcha Shkola, Kharkov, 1988) [in Russian].
18.  G. N. Savin, A. A. Lukashev, and E. M. Lys'ko, "Propagation of Elastic Waves in Rigid Body with Microstructure," Prikl. Mekh. 6 (7), 48-52 (1970).
19.  V. I. Erofeev and V. M. Rodyushkin, "Observation of Elastic Wave Dispersion in a Granular Composite and Mathematical Model for Its Description," Akust. Zh. 38 (6), 1116-1117 (1992).
20.  F. I. Fedorov, Theory of Elastic Waves in Crystals (Nauka, Moscow, 1965) [in Russian].
21.  R. Feynman, R. Leiton, and M. Sands, Feynman Lectures in Physics, Vol. 7: Physics of Continuum (Mir, Moscow, 1977) [in Russian].
22.  J. Hirt and I. Lothe, Theory of Dislocations, Ed. by E. M. Nadgornyi and Yu. A. Osip'yan (Atomizdat, Moscow, 1972) [in Russian].
23.  I. N. Frantsevich, F. F. Voronov, and S. A. Bakuta, Elastic Constants and Elasticity Moduli of Metals and Nonmetals, Ed. by I. N. Frantsevich (Naukova Dumka, Kiev, 1982) [in Russian].
Received 15 February 2005
Link to Fulltext
<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100