Mechanics of Solids (about journal) Mechanics of Solids
A Journal of Russian Academy of Sciences
 Founded
in January 1966
Issued 6 times a year
Print ISSN 0025-6544
Online ISSN 1934-7936

Russian Russian English English About Journal | Issues | Guidelines | Editorial Board | Contact Us
 


IssuesArchive of Issues2007-2pp.167-176

Archive of Issues

Total articles in the database: 12949
In Russian (Èçâ. ÐÀÍ. ÌÒÒ): 8096
In English (Mech. Solids): 4853

<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
A. V. Molodenkov, "On the solution of the Darboux problem," Mech. Solids. 42 (2), 167-176 (2007)
Year 2007 Volume 42 Number 2 Pages 167-176
Title On the solution of the Darboux problem
Author(s) A. V. Molodenkov (Institute for Problems in Precision Mechanics and Control, Rabochaya 24, Saratov, 410028, Russia, iptmuran@san.ru)
Abstract We consider the problem of determining the angular position of a rigid body in space from its known angular velocity and initial position (the Darboux problem) in quaternion setting. For an arbitrary angular velocity vector of the body, we present a solution based on Lappo-Danilevskii’s recursion relations [1]. New special cases of solvability of the Darboux problem in closed form are obtained.
References
1.  I. A. Lappo-Danilevskii, Application of Matrix Functions to the Theory of Linear Systems of Ordinary Differential Equations (Gostekhizdat, Moscow, 1957) [in Russian].
2.  A. I. Lurie, Analytic Mechanics (Fizmatgiz, Moscow, 1961) [in Russian].
3.  V. N. Branets and I. P. Shmyglevskii, Application of Quaternions to Rigid Body Orientation Problems (Nauka, Moscow, 1973) [in Russian].
4.  P. K. Plotnikov and Yu. N. Chelnokov, "Application of Quaternion Matrices in the Theory of Finite Rotation of a Rigid Body," in Collection of Scientific and Methodological Papers in Theoretical Mechanics (Vysshaya Shkola, Moscow, 1981), No. 11, pp. 122-129 [in Russian].
5.  Yu. N. Chelnokov, "Quaternions and Related Transformations in Dynamics of a Symmetric Rigid Body. II," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 3-18 (1998) [Mech. Solids (Engl. Transl.)].
6.  E. A. Ivanova, "On One Approach to Solving the Darboux Problem," Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 45-52 (2000) [Mech. Solids (Engl. Transl.)].
7.  V. I. Zubov, Analytic Dynamics of Gyro Systems (Sudostroenie, Leningrad, 1970) [in Russian].
8.  V. I. Kalenova and V. M. Morozov, "On the Application of Reducibility Methods to Problems of Dynamics of Gyro Systems," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 1, 8-14 (1987) [Mech. Solids (Engl. Transl.)].
9.  V. M. Morozov and V. I. Kalenova, Estimation and Control in Nonstationary Linear Systems (Izd-vo MGU, Moscow, 1988) [in Russian].
10.  G. P. Sachkov and Yu. M. Kharlamov, "On the Integrability of Kinematic Equations of Rotation," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 6, 11-15 (1991) [Mech. Solids (Engl. Transl.)].
11.  Yu. N. Chelnokov, "On Determining the Object Orientation in Rodrigues-Hamilton Parameters from Its Angular Velocity," Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 3, 11-20 (1977) [Mech. Solids (Engl. Transl.)].
12.  P. K. Plotnikov, Gyroscopic Measurement Systems (Izd-vo Saratov Univ., Saratov, 1976) [in Russian].
13.  N. P. Erugin, "Reducible Systems," Trudy Mat. Inst. Steklov 13, 1-95 (1947) [Proc. Steklov Inst. Math.].
Received 13 April 2004
Link to Fulltext
<< Previous article | Volume 42, Issue 2 / 2007 | Next article >>
Orphus SystemIf you find a misprint on a webpage, please help us correct it promptly - just highlight and press Ctrl+Enter

101 Vernadsky Avenue, Bldg 1, Room 246, 119526 Moscow, Russia (+7 495) 434-3538 mechsol@ipmnet.ru https://mtt.ipmnet.ru
Founders: Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS
© Mechanics of Solids
webmaster
Rambler's Top100